
InData
Version 2.0

InData™ 2.0 User’s Guide
Em Software, Inc.
December, 2002

Keeping in Touch with Em via the Web
Em maintains a World-Wide Web (Internet) site at www.emsoftware.com, with up-
to-date information about InData and its other products. We will provide news of
major updates, minor version software updaters, free software, on-line tips and
techniques to augment this manual, and the like, at this site, so we encourage you
to check it every so often.

Technical Support
If you have problems using InData, please first consult the “Troubleshooting and
Error Messages” chapter in this manual to find many common problems and
their solutions—your answer is very likely to be found there, and you can save
yourself a lot of trouble with just a little reading. For additional information, con-
sult the frequently-asked questions and other usage hints on the support pages
of Em’s web site at http://www.emsoftware.com/support.

Contact Information
Em Software, Inc.
503 Belleview Blvd.
Steubenville, Ohio 43952 USA
vox 740 284 1010 (main), 877 984 1010 (sales)
fax 740 284 1210 (main, sales)
web www.emsoftware.com
email support@emsoftware.com or info@emsoftware.com

Copyright and Trademark Information
This manual and software are Copyright © 2000-2003, Em Software, Inc. All
rights reserved.

InData and InFlow are trademarks of Em Software. All other trademarks and
registered trademarks are property of their respective holders.

Credits
This manual was written by Æleen Frisch, Exponential Consulting, North
Haven, Connecticut. Production was done by Æleen Frisch and Cat Dubail. The
original (Xdata) software was conceived and implemented by Chris Ryland, Em
Software (AMDG). The InDesign rewrite was performed by Chris Roueche. The Em
logo (on the manual cover) was created by A&M Design, Madison, Connecticut.

Version Information
Manual version 2.0, corresponds to InData version 2.0, December, 2002.

InData User’s Guide v

Table of Contents

List of Tips and Techniques . xi

1 Introduction . 1
System Requirements . 1
What You Need to Know … . 2

About Your Computer . 2
About InDesign . 2
About Your Database or Spreadsheet Program 2

About This Manual . 2
InData and InDesign Versions . 3
Platform-Specific Issues . 4
Typographical Conventions . 4

2 Installing InData . 7
InData Distribution Contents . 7

About InFlow . 8
Installing the InData Plug-ins . 9

Installing InData’s Auxiliary Files . 9
Personalizing Your Copy of InData . 9

3 InData Tutorials . 11
Preliminary Information . 11
Tutorial 1: Preparing an Address List . 12

Make Sure InData is Installed Properly . 12
Open the Tutorial File . 12
Examine the Document Setup . 12
Examine the InData Prototype . 14
Look at the Prototype’s Paragraph Attributes 16
Import Data into the Document . 17
Undoing a Data Import . 20
View During Import Options . 20

Tutorial 2: Creating a Company Phone List . 21
Setting up the Document . 21
Placing Fixed Text and Graphics on the Master Page 21
Creating the InData Prototype . 22
Setting InData Preferences . 25
Importing Data into the Document . 26
Making a Deliberate Mistake . 26
On Your Own . 27

Tutorial 3: Advanced Data Importing . 27
Adding a Title on the First Page . 28
Avoiding Unwanted Blank Lines From Missing Fields 29
Adding Room Numbers . 30

Import the Data . 31
Tutorial 4: Adding Department Headlines . 32

Comparing the Current and Previous Records 32
Creating Reversed Type with Paragraph Rules 34
Forcing a Paragraph to the Top of a Column 35

Tutorial 5: Importing Pictures . 36
Adding a Picture Frame to the Prototype . 36
Specifying the Picture Filename in the Prototype 37
Making the Picture Import Conditional . 38
Specifying Global Picture Attributes . 38
Import the Data . 39
When InData Can’t Find a Picture File . 40

Tutorial 6: Adding Document Headers and Footers 40
Creating a Mark in the Prototype . 41
Adding a Mark Reference to the Master Pages 42
Informing InData About the Mark Reference 42
Save the Document as a Template . 44
Import the Data . 44

Tutorial 7: Automated Document Creation . 45
Macintosh Scripting: AppleScript . 45
Windows Scripting: VBScript . 46
Preparing a Document for Automated Data Importing 47
Naming Stories . 48
Macintosh: Prepare the AppleScript . 49
Windows: Prepare the VBScript . 50
Perform the Automated Import Operations . 51

4 Basic InData Operations . 53
A Quick Overview of InData . 53

Prepare the InDesign Document . 53
Create an InData Prototype . 55
Specifying the Formatting of Incoming Data 56
Designating the Prototype . 57
Importing Data . 57

InData Prototype Fundamentals . 58
Where to Put the Prototype . 58
Selecting Field Names . 61
Skipping One or More Fields in the Data File 62
Inserting Fields More Than Once . 62
Field Placement Flexibility . 63
Missing and Empty Fields . 63
When to Omit the Right Chevron Mark . 63

More Examples of Formatting Prototypes . 64
Forcing Text to the Next Column, Frame, Page and Even/Odd Page . 66

The InData Menu . 67
Data Import Options . 68

Importing a Range of Records . 71
Document View Options . 71

Table of Contents

vi InData User’s Guide

Controlling Data Importing . 72
Prototype Errors . 73

Setting InData Preferences . 74

5 Preparing Data for Importing . 77
Data File Formats . 78

Handling Carriage Returns within Fields . 78
General Exporting Procedures . 78
Exporting Data from Database Applications:
An Example from FileMaker Pro . 79

Handling FileMaker Pro Databases with Repeating Fields 81
Exporting Data from Database Applications:
An Example from Visual FoxPro . 81
Exporting Data from Spreadsheet Applications:
An Example from Excel . 83
Creating Data Files Manually . 84

6 Conditional Data Importing . 85
if Statements . 86
Constructing Conditions . 87

Some Example Conditional Prototype Statements 89
if…else Chains . 90
Alternate Forms of the if Statement . 92
Forming Compound Conditions . 92
Arithmetic Operators . 93
Nested if Statements . 93

Comparing with the Previous or Next Record . 94
Avoiding Unwanted Blank Lines and Empty Text Boxes 94

Doing Something Every nth Record . 96
Constructing and Using Loops within Prototypes 99

Other Forms of the repeat Statement . 99
Leaving a Loop Early . 101
Ending a Loop Iteration Early . 101
Using Picture Frames in a Loop. 102

7 Manipulating Incoming Data . 103
Extracting Parts of Fields and Expressions . 103

Finding the Length of a Character String . 106
Extracting Substrings . 107
String Concatenation . 107
Including Literal Chevron Marks in a Prototype 108

Extracting Words and Lines from Expressions . 108
Extracting Lines . 109
Extracting Arbitrary Items . 110
Determining the Number of Chunks . 110

Handling Repeating Fields . 111
String Conversion Functions . 112
Determining the Current Record or Page Number 114

Table of Contents

InData User’s Guide vii

Accessing Arbitrary Fields within Records . 115

8 Importing and Formatting Pictures . 117
Importing Pictures . 117

Importing Pictures Conditionally . 119
Setting Picture Frame Attributes . 121

Prototype Statements for Setting Picture Frame Attributes 122
Setting Default Directory Locations for Picture Files 124
Handling Missing Picture Files . 125
Specifying Precise Picture Locations on the Page 125

9 Controlling Document Layout . 127
Creating a Mark in the Prototype . 127
Adding a Mark Reference to the Master Pages . 128
Updating Existing Headers and Footers . 130

Changing the Headers and Footers Themselves 131
Applying Master Pages within a Prototype . 132

10 Advanced Prototypes . 135
Record Input Control Statements . 135
Setting Variables . 137

Manually Wrapping Text Columns by Words 138
Implementing Fixed-Width Fields . 140

Testing the Data Type of Expressions . 140
Soliciting Input at Import Time . 141

Asking More than One Question . 141
Asking Only Once . 141

Using Multiple fields Statements . 142
InDesign Tags Support . 143

More Complex put styled Statements . 144
Inserting an Entire File of Text . 145

11 Hints for Debugging Prototypes . 147
Test with a Few Sample Records First . 147
Build up the Prototype Gradually . 147
Use Multiple Text Frames for the Prototype . 149
Make Sure the Data is OK . 150
Downplaying Prototype Statements . 150

12 Automating Document Building . 153
Conceptual Overview . 153
Naming Stories . 154

Naming Substories . 155
Finding Stories and Substories by Name . 155
Building Complex Multi-Part Documents . 156

Using InData with AppleScript (Macintosh) . 156
An Example Script . 157
Importing Large Data Files in Batches . 157

Table of Contents

viii InData User’s Guide

Using InData with Visual Basic (Windows) . 158
An Example Script . 159

13 InData Reference . 161
Entering Special Characters . 161
The InData Menu . 162

InData Preferences Submenu . 163
InData Control Panel Buttons . 163
Data Preferences Dialog . 164
View Preferences Dialog . 165
Find Story/Substory Dialog . 165
General Preferences Dialog . 166
Make Header/Footer Dialog . 167
Name Story and Name Substory Dialogs . 167
Range Preferences Dialog . 168
InData Prototype Elements . 168

Prototype Statements . 169
Expression Operators . 174
Built-In Constants and Variables. 179
Integer Operations . 180
Comparison Operations . 180
Logical Operations . 181
Grouping Operations . 181

InData Technical Information . 181
InData Limitations . 181
InData Memory Usage (Macintosh) . 181
InData Reserved Words . 182
Additional Prototype Restrictions . 182
Processing Very Large Data Files . 183
Page Complexity . 183

14 Troubleshooting and Error Messages . 185
Common Problems and Their Causes . 185
Status Messages . 187
Error Messages . 189

User Interface Errors . 190
Prototype Structure Errors . 192
Prototype Execution Errors . 195
AppleEvent Scripting Errors . 200

Index . 201

Table of Contents

InData User’s Guide ix

x InData User’s Guide

List of Tips and Techniques

Adding page numbers to a document . 22
Applying master pages automatically . 132
Avoiding empty text boxes . 94
Avoiding unwanted blank lines . 29-30
Capitalizing/uncapitalizing character strings . 112
Converting quotes and double dashed automatically 144
Creating multiple output records for each incoming record 99
Creating reversed type . 34
Creating running headers and footers . 127
Creating shaded and ruled tables . 97-98
Determing whether a file exists . 145
Doing Something Every N Records . 96, 135
Forcing a paragraph to the top of a column/page. 35
Formatting fractions . 113
Formatting phone numbers . 104
Formatting prices. 104-105
Handling fixed-width fields . 140
Including pictures within text . 37
Inserting a text file within the imported data . 145
Linking text boxes into the automatic text chain 54
Performing different actions based on a field value. 90
Positioning picture boxes precisely. 125
Presetting InData dialog settings . 174
Prompting for input during imports. 141
Saving documents as templates . 26
Translating numerically coded fields to descriptive strings 108-109
Updating Imported Data . 57
Wrapping text by words . 138

InData User’s Guide xi

xii InData User’s Guide

1
Introduction

InData™ is a sophisticated data publishing facility for use with Adobe InDesign.®

It automates the formatting of documents containing repeating data units such
as catalogs, directories, mailing labels, price lists, and schedules, supporting both
text and graphics. Formerly, each separate element in such documents had to be
formatted by hand. InData automatically applies the format you specify to each
element of information as it is imported from the original data source. InData
accepts data in the major Macintosh and Windows data exchange file formats,
enabling you to use it with textual data created in all major database and spread-
sheet packages, or even with data created by hand in a word processor.

InData operates as an plug-in to InDesign, automatically becoming part of the
InDesign publishing system once it is installed. InData runs from inside of InDe-
sign, under its own menu, and imports and formats text into normal InDesign
publications. It is not a stand-alone program which must be run separately from
InDesign, and no special additional files are required. (See the InDesign refer-
ence manual for general information about plug-ins.)

InData is available in both a MacOS (PowerPC) version and in a Windows (Intel)
version. The Macintosh version is fully carbonized and thus runs natively under
both Mac OS 9 and Mac OS X.

Since InDesign doesn’t have the notion of auto-flow (automatic page creation)
except when placing text, we provide the InFlow plug-in as a companion to InDa-
ta to provide this functionality.

System Requirements
In order to run InData, you will need a Macintosh or Windows-based computer
running InDesign. The computer will need sufficient memory and hard disk
space to support InDesign (consult the InDesign documentation for details).
MacOS-based computers should run Mac OS 9 or Mac OS X. Windows 98, NT,
2000, ME and XP are supported on Intel systems (to the extent that InDesign
itself supports each operating system).

InData User’s Guide 1

What You Need to Know …
About Your Computer
You should be familiar with basic Macintosh or Windows concepts and proce-
dures, such as using the mouse, selecting items from menus, entering informa-
tion in dialogs, navigating among folders, and manipulating files (e.g. copying,
renaming, and deleting).

About InDesign
You should be comfortable with basic InDesign tasks. You should know how to:

◆ Specify text formats: font, size, style, and so on.
◆ Set paragraph formats, including indents, before and after spacing,

tabs and rules.
◆ Work with text and picture frames.
◆ Use the rulers and guides.
◆ Edit text inside InDesign.
◆ Set up and assign master pages.
◆ Save and print publications.

It is very helpful, but not essential, to understand InDesign templates and char-
acter and paragraph styles.

About Your Database or Spreadsheet Program
This manual generally assumes that you are familiar with designing and manip-
ulating databases or spreadsheets with your database and spreadsheet applica-
tions and that you know the meanings of terms like record and field. You will also
need to know how to export data from your application. Chapter 5, “Preparing
Data for Importing,” reviews data exporting procedures for several popular appli-
cations, and discusses general considerations applicable to all such packages.
However, be sure to consult the documentation for your own application for the
details of its export procedure.

About This Manual
Chapter 2, “Installing InData,” describes the steps necessary to install InData.

Chapter 3 contains the InData Tutorials. These seven tutorials provide a hands-
on, step-by-step introduction to InData’s essential features, suitable for new users
of InData. Experienced InDesign users may want to skip the early tutorials, or
even the whole section, and begin with the “Quick Overview,”which makes up the
first section of Chapter 4.

Chapter 4, “Basic InData Operations,” contains a quick overview of InData as its
first section. Later sections discuss basic concepts and simple prototypes—the

What You Need to Know … Chapter 1:

2 InData User’s Guide

mechanism for telling InData how to place and format imported data records—
in more detail. This chapter also discusses InData menus and dialogs.

Chapter 5, “Preparing Data for Importing,” provides a general discussion of data
export techniques from database and spreadsheet programs, using Excel, Apple-
Works and FoxPro as examples.

Chapter 6, “Conditional Data Importing,” considers more advanced prototypes in
which data is imported only when specified conditions are present. It also dis-
cusses creating loops within InData prototypes.

Chapter 7, “Manipulating Incoming Data,” discussing various techniques for
extracting parts of and transformations of the raw data as it is imported.

Chapter 8, “Importing and Formatting Pictures,” covers all aspects of importing
pictures with InData.

Chapter 9, “Controlling Document Layout,” discusses creating running headers
and footers and assigning master pages within InData prototypes.

Chapter 10, “Advanced Prototypes,” discusses the more complex features of InDa-
ta’s prototype language, including soliciting user input, controlling record pro-
cessing, using variables in prototypes, and building formatted data using InDe-
sign Tags.

Chapter 11, “Hints for Debugging Prototypes,” discusses techniques for building
complex prototypes and sorting out the bugs in any prototype.

Chapter 12, “Automating Document Building,” discusses methods for automating
InData operations using the AppleEvent scripting facility available under MacOS
and Windows Automation using Visual Basic.

Chapter 13, “InData Reference,” contains descriptions of all InData menu items
and dialog fields as well as a complete description of the InData prototype lan-
guage. It also discusses various InData fine points, including its incoming data
conversion and string comparison specifications.

Chapter 14, “Troubleshooting and Error Messages,” describes solutions to com-
mon InData importing problems and explains the InData error messages.

Introduction About This Manual

InData User’s Guide 3

Platform-Specific Issues
InData has been designed to work as similarly as possible on all of its support-
ed computer and operating systems. Differences between versions will be noted
as appropriate. Note, however, that the dialogs appear very similarly under the
various operating systems. For example, here is the same sample dialog frame as
it appears under Mac OS X (upper left), Mac OS 9 (lower left), Windows XP
(upper right) and Windows 2000 (lower right):

Mac OS X Windows XP

Mac OS 9 Windows 2000

Note that the majority of the screen shots in this manual are from Mac OS X or
Windows XP systems, and we tend to alternate between them by page or section.
However, a few shots from the older operating systems also still linger in this
manual. As you can see from the preceding examples, however, the differences
between the various interfaces are purely cosmetic.

Finally, in this manual, we will consistently refer to directories and subdirecto-
ries as “folders,” a term which is used in both Macintosh and Windows parlance.

Typographical Conventions
We use alternate typefaces in this manual to distinguish certain types of items
within the text. Generally, InData prototypes will be set off in separate para-
graphs set in boldface Helvetica type, like this:

«fields last, first, middle, address, city, state, zip»

When we need to talk about prototype elements within a paragraph, we’ll again
set them in boldface Helvetica type. For example, the previous prototype illus-
trates an example of the fields statement.

About This Manual Chapter 1:

4 InData User’s Guide

When we are discussing prototype syntax, we will use italic Helvetica type to
indicate general prototype elements (i.e., parameters within the prototype) which
will need to be replaced by specific text when used in a InDesign document, as in
this example:

«fields new_field, last, first, middle, address, city, state, zip»

In this example, new_field is a placeholder for a field name that you would pro-
vide when you actually used such a prototype. Notice that we set such parame-
ters in italics when we use them within regular text as well.

When we add comments to prototypes for exposition only, we will set them in reg-
ular italic type to distinguish them from the prototype itself, as in this example:

«if prev name <> name»«name» Insert only new names.
«endif»

The names of InDesign and InData menu items and dialog fields are set in bold-
face type, as in “select Open… from the File menu” and “click the Cancel button
to change your mind.” We use the following syntax to represent paths through a
series of nested menus: the form InData=>Preferences=>General… means to
select the Preferences item from the InData menu in InDesign and then to select
the General… item from the Preferences “slideoff” submenu.

Finally, file and folder names within regular text are set in plain Helvetica type,
as in “this file should be placed in the Plug-ins folder.”

Introduction About This Manual

InData User’s Guide 5

6 InData User’s Guide

2
Installing InData

This chapter describes the steps needed to install InData.

InData Distribution Contents
InData is distributed in electronic form (StuffIt archive under MacOS, WinZip file
under Windows), usually from Em Software’s web site. If you’ve purchased the
product, you also should have received a serial number that will fully unlock it.
These are the files you will find in the InData folder.

InData 2.0.pln
The InData plug-in file.

InFlow 2.0.pln
An auxiliary Em Software plug-in that enhances InDesign’s default text
frame threading capabilities (described in more detail in the next section).

Read Me
A text file containing last-minute notes, known problems with InData and
InDesign, any system or plug-in conflicts, etc. We highly recommend you read
this to avoid any surprises.

Samples
A folder containing demonstration files, including a Read Me text file explain-
ing what each sample does and how to use it (so that the demonstration and
release distributions can be identical).

Scripting Examples
A folder containing files illustrating ways of automating InData operations,
including an explanatory Read Me text file. This folder contains a demo doc-
ument, Demo Doc, and other text and picture files that it uses. The sample
scripts themselves are stored in a subfolder called Visual Basic on Windows
systems and called AppleScript on Macintosh systems. There may also be addi-
tional demonstration files present in this folder.

Tutorial
A folder containing the tutorial files for this InData manual.

InData User’s Guide 7

There may be additional files in your InData folder. In this case, the Read Me file
will describe their contents.

About InFlow
The InFlow PlugIn adds the ability to mark arbitrary master page text thread
frames as “ autoflow.” When text in an autoflow thread becomes overset, a new
page is added and the overset text is automatically flowed into the new page’s
autoflow thread.

Note that InFlow is logically independent of InData and adds a valuable feature
to InDesign. We went to some lengths to develop it, and are including it with
InData, because the latter generally requires this feature in normal use. InFlow
has a 10 page limit unless a registered copy of another Em Software product is
present (e.g., InData or InCatalog).

QuarkXPress users should find InFlow very familiar, from the ability to create
new documents with full-page autoflow text frames, to the ability to mark arbi-
trary master page text threads as autoflow.

With InFlow installed, marking the Master Text Frame checkbox in the New Doc-
ument dialog creates a single full-page autoflow text frame on each of the initial
master spread’s pages. This allows for easy creation of autoflow documents.

InFlow also adds a Set Autoflow Thread item to the Object menu. It allows the
user to mark any master page’s text thread as an autoflow thread. If the select-
ed master page frame is already the default autoflow thread on that page, then
the menu item will change to Clear Autoflow Thread; this item can then be used
to remove the autoflow property. Only empty master page text frames may be
marked as autoflow, and all frames in that thread must be on a single page. Only
one default autoflow thread per master page is allowed.

Copy Protection
InData is serialized but, like InDesign, not network-copy-protected, so it will
never complain about too many copies running at once. However, if you fail to
purchase enough copies to cover the maximum simultaneous usage of InData at
your site, you are legally in violationof your license agreement, and more impor-
tantly, ethically guilty of stealing from Em Software.

We have some of the most aggressive multi-pack discounts in the industry to
make multiple copies affordable, to encourage you to stay legal as well as ethical.

Installing the InData Plug-ins Chapter 2:

8 InData User’s Guide

Installing the InData Plug-ins
Installing InData is very simple. Drag-copy the two plug-ins (InData 2.0.pln and
InFlow 2.0.pln) from the distribution folder to your InDesign folder’s Plug-ins sub-
folder, or, more appropriately, to one of the sub-sub-folders such as Filters. We rec-
ommend that you create a new subfolder named Em Software and that you place
all relevant plug-in files there. Once the plug-in files are in place, InData is ready
to use and will be available the next time InDesign is started. If InDesign is cur-
rently running, end the current session and restart it before trying to use InDa-
ta.

If you haven’t already done so, fill out and email your registration data now (a
form is provided in the top-level Read Me file). Registered InData users receive
notices of upgrades, occasional special offers, etc.

Installing InData’s Auxiliary Files
You may also want to install the various InData auxiliary folders (listed in the
“distribution contents” section above) somewhere. They may be copied to any fold-
er you choose, or you can leave them in the distribution folder.

Personalizing Your Copy of InData
The first time that you start up InDesign after installing InData, you will be
prompted to fill in your name, organizational affiliation and InData serial num-
ber:

Your InData serial number should have been provided over the phone, by email
or via fax when you purchased InData. Be sure to record the serial number some-
where safely and permanently–if you lose it, we won’t necessarily be able to find
it for you.

Note that the serial number is stored in a file called InData.Reg in InData’s con-
taining folder. If you move InData to another machine, you should also move the
InData.Reg file along with InData.pln unless you don’t mind re-entering your seri-

Installing InData Personalizing Your Copy of InData

InData User’s Guide 9

al number. And, if you install later free upgrades for InData, you won’t have to re-
enter the serial number after installing InData, as it’ll be remembered in this file.

If you’re using InData in demonstration mode, you’ll also get an InFlow serial-
ization dialog, in which you should press the Demo button to proceed. (If you’re
using a serialized copy of InData, InFlow will automatically work without seri-
alization, since it’s bundled.)

10 InData User’s Guide

3
InData Tutorials

This section contains seven tutorials introducing InData. Each one should take
you from fifteen to forty-five minutes. After completing these tutorials, you will
be ready to begin importing and formatting data with InData in your own InDe-
sign publications and to go on to the other chapters in this manual which present
InData’s advanced features.

Preliminary Information
Using InData involves three elements:

◆ A raw data file, containing the records to be imported and formatted using
InData and InDesign, exported from a database or spreadsheet application,
or prepared by hand using a word processing program. Generally, these
records are stored in an external file, but they may also be imported from the
clipboard or from a text story on the InDesign pasteboard.

◆ A InDesign document, either designed from scratch or created by opening
a template.

◆ An InData prototype, which tells InData how the imported records are to
be placed and formatted. As we’ll see, the prototype is not a separate file, but
rather exists as text within the InDesign publication.

These components will be explored in detail in the tutorials that follow.

All of the tutorials will assume that you have already started the InDesign pro-
gram and that the tutorial files have been installed onto your system somewhere
(see Chapter 2).

InData User’s Guide 11

Tutorial 1: Preparing an Address List
In this tutorial, you will examine an InData prototype and use it to import and
format a company address and phone list.

Make Sure InData is Installed Properly
InDesign should have a new menu named InData to the right of the Object menu.

This menu is used to perform the various InData operations, and you will use it
throughout these tutorials.

If no InData menu is present, then InData is not installed properly. Check to
make sure that the InData.pln file is stored in the InDesign Plug-ins folder or one of
its sub-folders, and that you have restarted InDesign since placing it there.

Open the Tutorial File
1 Choose Open from the File menu and then select the folder containing the InDa-

ta tutorials files.

2 Once the tutorials folder is open, select the file Tutor_1, make sure that Open As
is set to Normal, and then click OK to open it. The file Tutor_1 is a InDesign tem-
plate; opening it in this way creates a new file with its same format while leaving
the original unchanged. The new file will eventually become the Odin Mining
Company’s employee address and phone directory.

Examine the Document Setup
The Tutor_1 document is all ready to import data with InData. We will use it to
illustrate the use of InData prototypes within InDesign documents and to demon-
strate the data importing process.

Tutorial 1: Preparing an Address List Chapter 3:

12 InData User’s Guide

When you open the document, its first (and only) page will be positioned in the
InDesign document window:

The page header—Odin Mining Company Employee Address List—and foot-
er (not shown in the previous illustration) are created on the document’s mas-
ter page. Turn to the document’s master page now.

3 Select the Window=>Pages menu path to open the Pages window (if necessary).
Then, double click on the icon for Master Page A.

InDesign master pages are used to set up the default format of normal document
pages. They may also be used to place standard text and graphics onto every page
of the document. For example, the header and footer in Tutor_1 were created by
making new text frames on the master page, outside of the main text thread, and
then typing text into them. These text frames and their contents will be copied
automatically to every page of the document as it is created.

Page header:
Literal text located
on Master Page A.

InData prototype:
Used to specify the

placement and format
of each incoming data
record. The prototype

itself is located on
document page 1, in

the main text flow box.

InData Tutorials Tutorial 1: Preparing an Address List

InData User’s Guide 13

The master page for this document looks like this:

The static text frames on the master page play no role during InData data
importing. Rather, the data import process is controlled by some special text
known as a prototype, which is placed on the first regular document page, usu-
ally into a text frame which is part of the document’s main text thread or into a
text frame on the pasteboard of the first spread within the document.

This is a general principle which applies to all InData importing: master pages
are used to set up the layout of the document pages—size and placement of text
frames, number of columns, headers and footers, and so on—while the prototype,
which controls data importing, resides in a text frame located somewhere on the
first document page or the pasteboard beside it.

4 Go back to page 1 by double clicking its icon in the Pages window.

Examine the InData Prototype
Here is the InData prototype found in the large text frame on page 1 of Tutor_1:

«fields lastname, firstname, address, city, state, zip, phone¶
«firstname» «lastname»¬
«address»¬
«city», «state» «zip»¬
«phone»¶

#

The document’s headers
and footers are placed in

separate text frames on
the master page. They

will appear automatically

on every document page
using this master page.

Tutorial 1: Preparing an Address List Chapter 3:

14 InData User’s Guide

The first thing to notice about the prototype are all the left and right chevrons
(European-style quotation marks): « and ». Chevrons are used to distinguish
the InData prototype statements and placeholders from other, literal text within
the prototype.

The first line of this prototype is used to specify the structure of the data file to
InData. It begins with the keyword fields, which is followed by a list of field
names, separated by commas. These names are used to identify the correspond-
ing field in the remainder of the prototype. The names may be completely arbi-
trary and need not correspond to the actual field names in a database or spread-
sheet application, though a prototype is easier to deal with if they correspond
exactly. If necessary, the fields statement can continue onto more than one line.

The fields statement in our prototype indicates that the records in our data file
each have seven fields, which we are naming lastname, firstname, address, city,
state, zip, and phone; the fields in each data record appear in the same order as in
the fields statement:

«fields lastname, firstname, address, city, state, zip, phone ¶
Crashaw Richard 928 St. Teresa Terrace Iconia NM 72637 373-291-2771
Greville Fulke 876 Caelica Lane Loredo TX 56293 747-828-2837
Howard Henry 12435 Surrey Rd. Earlin CA 98773 767-293-8372
Jonson Benjamin 8211 Fox Dr. Valpone SD 72622

The remaining lines of the prototype specify how the various fields of each record
should be arranged in the document and the format that each field should have.
In general, the form «fieldname» in a prototype is called a field placeholder.
A field placeholder tells InData to immediately insert that field’s contents as each
record is imported and to format it the same way that the field placeholder is for-
matted. Keep in mind that the name of the field is as defined in the prototype’s
fields statement; it is not necessarily the name of the field in its originating data-
base or spreadsheet application.

For example, the field placeholder «lastname» in the second line of our prototype
directs InData to place the contents of the lastname field—which is the first field
in each record, since lastname appears first in the fields statement—into the field
placeholder’s position as each record is imported, and to format it the same way
that the characters “«lastname»” are formatted: in this case, in 12 point boldface
Helvetica type.

Any characters within the prototype not enclosed in « and » marks are carried
over literally into the formatted output. Thus, our prototype inserts a comma
between the city and state fields, and also places spaces and line breaks at var-
ious points between fields.

The complete prototype specifies that four lines of text will be inserted for each
record in the data file. All of the lines will be in 12 point Helvetica type, and the
first line of each imported record will be in boldface.

InData Tutorials Tutorial 1: Preparing an Address List

InData User’s Guide 15

InData follows the prototype’s directions as it imports each record from the data
file. After it finishes formatting each record, it returns to the beginning of the pro-
totype and then begins processing the next record from the data file.

Look at the Prototype’s Paragraph Attributes
5 If the carriage returns and the end of paragraph marks in the prototype are not

visible on your screen, select Type=>Show Hidden Characters.

Notice that the prototype consists of two paragraphs. The fields line is one para-
graph, and the remaining lines form the second paragraph. The arrow at the end
of the third, fourth, and fifth lines is a new line character, entered by pressing
Shift-Return. It tells InDesign to start a new line at that point, without beginning
a new paragraph.

6 Place the insertion point on the third line of the prototype and then select the
Paragraph… option from the Type menu. The Paragraph settings palette will
appear.

Imported records will take on paragraph settings as well as character formats
from their field placeholders. In our prototype, notice that the Space After field
has been set to 1 pica.

Examine the Keep Options for the paragraph by clicking on the triangle to the
left of the panel tabs, and selecting that item.

Notice that the Keep Lines Together box is checked, as is the All Lines in ¶ radio
button underneath it. The first setting will place 1 pica of space between entries
in the address list, while the latter ones will ensure that no entry is broken across
a page or column boundary (since it’s all one paragraph).

7 Close the Keep Options window without changing any settings. Save the file to a
convenient location (use any name you choose).

The character and paragraph formats of each portion of the prototype will be car-
ried over into the formatted data records. If prototype charactors or paragraphs
have a style applied to them, the imported records will too.

Tutorial 1: Preparing an Address List Chapter 3:

16 InData User’s Guide

Import Data into the Document
Now we are ready to import our data. There are two steps required to import data
with InData:

◆ Telling InData where the prototype is, and placing the cursor at the place in
the document where the imported records should go. In the simplest case,
both of these may be accomplished simply by placing the cursor anywhere
within the prototype (without selecting any text).

◆ Selecting an import source from the InData menu.

Let’s try it:

8 With the text (content) tool selected, place the cursor anywhere within the pro-
totype, making sure that you aren’t actually selecting text (i.e., you should see
a blinking cursor, not a selection region).

9 Select InData=>Import from File… from the InDesign menu. The InData control
panel will appear on the screen followed instantly by the InData file specification
dialog.

We will use this dialog to specify which data file to import. When we refer to the
data file containing records for import into InDesign using InData, we’re not talk-
ing about the original database or spreadsheet file where the database is entered
and modified. InData cannot read native database or spreadsheet file formats.
Rather, you must export a text version of the data to a separate “data snapshot”
file before importing it with InData. This step has already been performed for you
in these tutorials. Exporting data is discussed in detail in Chapter 5.

InData control panel
(in back)

InData import file
selection dialog

InData Tutorials Tutorial 1: Preparing an Address List

InData User’s Guide 17

10 Select the file named OdinEmp.TXT from the list and click Open. Once a file has
been selected, the InData control panel will be completely visible.

The buttons on the top of the InData control panel bring up dialogs which may
be used to set the characteristics of the import process before it begins. They spec-
ify the format of the data file (Data…), which records to import (Range…), and
how often to update the screen while importing and formatting data from the
data file (View…).

11 Click the Data… button to go to the Data Preferences dialog.

The Data Preferences dialog contains a plethora of settings and can seem daunt-
ing at first. However, for most import operations the default settings work just
fine. We’ll only be looking at the Basic format pop-up menu. This menu specifies
how fields within records are separated in the data file. The two most common
methods are to place commas between fields (called comma-delimited format)
and to place tabs between them (tab-delimited format). Our data file is set up
with tabs separating the fields in each record.

12 If the Basic format field is not already set to Tab-delimited, then change its cur-
rent setting by selecting Tab-delimited from the pop-up menu:

13 Once the file format is set to Tab-delimited, click OK to return to the InData con-
trol panel.

Import progress bar:
Indicates how much of the
data has been imported so far.

InData message area:
Shows progress info as

importing proceeds.

Tutorial 1: Preparing an Address List Chapter 3:

18 InData User’s Guide

By default, InData is set up to import all of the records from the data file and to
update the screen only on request. For this first import operation, we’ll use these
default settings for data range and document view.

14 Click the Start button to begin data importing.

As importing proceeds, the bar graph in the status area indicates how much of
the data file has been imported so far:

InData will also display messages about how the import is proceeding in the top
part of the status area.

It’s much faster not to update the document on the screen while importing data,
so this is InData’s default setting. Once importing is complete, the document view
will be updated. In this case, the prototype has been replaced by the imported
names and addresses from the data file, formatted just as the prototype was. The
completed document will look something like this:

Undoing a Data Import
Sometimes, once a data import operation is complete, it becomes clear that you
made a mistake in the prototype, and you’ll want to redo the import. In this case,
what you need to do is to go back to the version of the document as it existed
before the import operation. Assuming that you have saved the document at that
point, the best way to do this is to select File=>Revert from the InDesign menu.
We’ll do that now to illustrate this process.

15 Select Revert from the File menu. Click OK in the confirmation dialog that
appears.

InData Tutorials Tutorial 1: Preparing an Address List

InData User’s Guide 19

The original prototype reappears in the document window, ready once again to
import data.

InData also lets you place the prototype in a separate text frame within the doc-
ument, rather than in the target text frame. In this case, you can re-do an import
operation simply by reimporting over the unwanted data. This option is discussed
in the section “Alternate Prototype Placement” in Chapter 4.

View During Import Options
We’ll import the same data into this document once more to illustrate the work-
ings of the options in the View Preferences dialog.

16 Select Import from File… from the InData menu. (If this choice is dimmed, it
means that you have forgotten to place the cursor in the prototype first.) Select
OdinEmp.TXT once again from the Data File dialog, and then click the View… but-
ton on the InData control panel.

17 For this import, set InData to update the screen every ten records by clicking the
lowest radio button and entering 10 into the frame. Then click OK to return to the
InData control panel.

18 Go to the Data Preferences dialog and once again make sure that the Basic for-
mat field is set to Tab-delimited. Click OK to return to the InData control panel,
and then click Start to begin importing records.

This time the screen is updated during data import. Notice how importing stops
while the screen is being updated and that the entire process takes longer in this
mode.

You have now completed the first InData tutorial. You may go on to the second
tutorial below immediately or come back to it sometime later. When you decide
to stop, select Quitfrom the File menu to end this InDesign session; you need not
save the document you just created.

There are 3 document view update
choices during the import operation:

Show no updates at all during import.

Don’t update until import is complete.

Update window after each batch of the
specified number of records.

Tutorial 1: Preparing an Address List Chapter 3:

20 InData User’s Guide

Tutorial 2: Creating a Company Phone List
In this tutorial, you will set up a complete InDesign document that will become
a company phone list. You will place items on the master pages, enter an InDa-
ta prototype, and use it to import and format the actual data records. Later tuto-
rials will build on the relatively simple document you create here.

Setting up the Document
1 Create a new InDesign document by selecting New… from the File menu. Create

a one-sided, US Letter document (uncheck Facing Pages box), having two
columns. Choose reasonable values for the page margins and spacing between the
columns, and be sure that Master Text Frame is checked. Some suggested values
are illustrated in the illustration below:

You may choose different values if you like, but deviating too far from these sug-
gestions may produce unpredictable results. When you click OK, InDesign will
open the new document and display page one in the document window.

Placing Fixed Text and Graphics on the Master Page
The first thing we’ll set up are our master page items.

2 Turn to the document’s master page by opening the Pages palette if necessary
(select Windows=>Pages), and then double click on the icon for Master Page A in
its top section.

We’re going to add a header and a graphic to the master page which will appear
on every page of the finished document.

3 Select the text frame tool, and place a text frame above the two main text
columns on the master page. We placed the top of ours about 1/2” from the page
edge. Make the text frame extend from the left to the right margins.

InData Tutorials Tutorial 2: Creating a Company Phone List

InData User’s Guide 21

Once you’ve drawn the frame, enter the following text into it:

A Poole Asteroid Mining Company Phonelist

The first character—which appears as A—is the InDesign page number place-
holder. It is produced by choosing Layout=>Insert Page Number. Follow this
character by a tab, and then the literal text above.

The header you’ve created will place the page number and document title in the
upper left corner of every page. Feel free to format the header text however you’d
like (we chose 9-point Helvetica bold). Next, we’ll add a graphic to the master
page.

4 Select the rectangular frame tool and draw a picture frame at the bottom of the
page. Make the picture frame about 1.25" x 2”.

5 Adjust the text frame so that its bottom edge is above the picture box.

6 Select Place from the File menu. Select the file P_Logo.TIF from the list, and then
click OK.

7 Once the graphic appears, size it for the frame you’ve drawn by Object =>Fitting
=>Fit Content Proportionately. This command sizes the picture to fit the frame
while maintaining its aspect ratio. If you want, you can also fine tune the pic-
ture’s placement within the frame by hand.

We’ll now turn to the job of creating the InData prototype.

Creating the InData Prototype
The InData prototype does not go on the master page. Rather, it is placed on the
first document page where you want the imported records to start. So we’ll need
to turn back to page one before starting the prototype:

Your completed master page will
look something like this one.

Tutorial 2: Creating a Company Phone List Chapter 3:

22 InData User’s Guide

8 Turn back to page 1 of the document by double clicking on its icon in the Pages
palette.

Notice that the header and graphic you put on the master page now appear on
page 1. Since this is an actual document page, the page number placeholder has
been replaced by the actual page number (1 in this case).

9 Select the content tool and place the cursor at the top of the left text column. (You
may want to choose View =>Actual Size first.) This is where the prototype will go.

For this phone list, we’ll be using the first four fields of each record:

◆ The last name of the employee
◆ The employee’s first name
◆ The employee’s phone extension
◆ The employee’s title.

Here are some records from the data file:

Calvin John 2873 VP Personnel …
Castiglione Baldasar 2283 Sales Rep …
Donne John 2847 Senior Trainer …
Drake Francis 2871 Development Engineer …

We’ll call these first four fields last, first, ext, and title, respectively. You’re now
ready to type in a fields definition statement for this file.

10 Type in the following fields statement, ending with a carriage return:

«fields last, first, ext, title¶

Chevron characters are typed using the following keystrokes:

OPENING CHEVRON: « CLOSING CHEVRON: »
Macintosh Option-\ Shift-Option-\
Windows Alt-0171 Alt-0187

You can also use the Type=>Insert Special Character menu, available by right
clicking under Windows or control clicking on the Macintosh. Note that all InDa-
ta special characters have been added to the menu.

Notice that the last character of the prototype statement line is a paragraph
marker, produced when you entered the carriage return (select Type=>Show Hid-
den Characters if paragraph marks in the text are not already visible). When an
InData prototype statement ends with a carriage return, and the return isn’t part
of the desired result, then the right chevron is not needed.

InData Tutorials Tutorial 2: Creating a Company Phone List

InData User’s Guide 23

Next, you will specify how the data is to be entered and formatted. The final
entries will look like this:

Boccaccio, Giovanni . Ext. 2176
Secretary

11 Type in the following prototype lines:

«last», «first» Ext. «ext»¬
«title»¶

The right chevron in reversed colors indicates a tab; it will appear in light blue
on the screen. The character at the end of the first line is a new line (Shift-
Return), and the prototype ends with a carriage return, producing the end of
paragraph mark. We will set up an appropriate tab stop to separate the extension
from the name a bit later.

The field placeholders indicate that the contents of that field are to be inserted;
all of the other characters you typed will be inserted literally into each record as
it is formatted. Thus, this prototype will enter the contents of the last field first (it
also happens to be the first field in the data file), followed by a comma and a
space. Then it will insert the first field, followed by a tab and “Ext.” Then it will
insert the third field in each incoming record—ext—followed by a line break (but
not starting a new paragraph). Finally, on a second line for each record, InData
will insert the contents of the title field.

The prototype ends with a carriage return, starting a new paragraph. Thus, each
record in the data file will become its own paragraph in the finished document.
In this case, the paragraph mark is a literal character within the prototype, since
we want InData to start a new paragraph for each imported record. Thus, the
right chevron is included on the title field placeholder, so the ending paragraph
return in treated as literal text instead of being “consumed” as the end of an
InData prototype statement.

Now you will specify the formatting for the prototype. First of all, the last name
should be in boldface:

12 Select the entire field placeholder for the last field, including the « and » marks.
Make those characters bold (using the Character palette).

13 Using the same method, select and format the title field placeholder to change its
formatting to italic type. You may also make any other formatting changes that
you want to.

The final step in preparing the prototype is to set the tab stop before the exten-
sion field. We’re placing our tab stop at the right margin of the text column.

»

Tutorial 2: Creating a Company Phone List Chapter 3:

24 InData User’s Guide

14 Place the cursor in the second line of the prototype and then select Tabs… from
the Type menu. Set a right tab at at the right margin by clicking on the right tab
icon. Then, click in the ruler above the text frame near the right margin, and
adjust the new tab stop if necessary. Return to the Tabs palette and set the tab
leader character to a period, and then close the palette.

Finally, set the space after setting for this paragraph to 12 points (0.1667”).

The fully formatted prototype appears below. It is now ready to import data.

«fields last, first, ext, title¶
«last», «first» . Ext. «ext»¬
«title»¶

Setting InData Preferences
The last time we imported data with InData, we had to specify the data file for-
mat and screen updating selection each time. In this tutorial, we’ll make the
appropriate settings permanent for this document.

This is accomplished by setting InData preferences, accessed via the Preferences
item on the InData menu. As is true of InDesign preferences, whenever prefer-
ences are set while a document is open, the settings apply to that document alone.
When they are set without any open document, they apply to every document
that has not set its own specific preferences.

Selecting InData=>Preferences produces a slideoff menu:

The Data… selection brings up the Data Preferences dialog. Changes that you
make to InData’s default settings will take effect for every subsequent data
import operation in the currently open document.

15 Set the default data format preferences for this document to tab-delimited by
selecting Preferences=>Data… and then choosing Tab-delimited from the Basic
format pop-up menu. Click OK to exit from the dialog.

The View… item on the InData Preferences menu allows you to specify the doc-
ument’s View Preferences defaults. Set this default now if you wish.

»

InData Tutorials Tutorial 2: Creating a Company Phone List

InData User’s Guide 25

The Range… item allows you to set the range of records which should be import-
ed (the default setting is all records in the data file).

The General… item contains a variety of settings, including many specific to pic-
ture importing, which we won’t consider here. It also allows you to instruct InDa-
ta to automatically begin importing data once the data file is chosen (rather than
waiting for you to press the Start button). You may set this option if you like.

Before importing data into a document, it’s a good idea to save the document in
case you want to use it more than once. If it’s something you might want to use
frequently, you can save it as a template. We’ll do that for our document now.

16 Select Save As… from the File menu to save your work. Select the Template but-
ton, and enter a filename into the frame (perhaps Tutor_2). Then click OK to exit
from this dialog.

Importing Data into the Document
Since we’ve set the data file type already, we’re ready to import data.

17 Place the cursor anywhere within the prototype. Then choose InData=>Import
from File…. When you are prompted with a file selection dialog, choose the file
named PooleEmp.TXT located in the InData Tutorial folder. Then press the Start but-
ton on the InData control panel (unless you set autostart under General Pref-
erences, in which case InData starts importing immediately).

When importing and formatting is finished, all the records in your document will
look like the sample shown previously in step 10.

Making a Deliberate Mistake
To conclude this tutorial, we’ll expose you to a common error made by beginning
InData users.

18 Select Revert to Saved from the File menu to undo the import operation. The,
select the right chevron for the last field and change the formatting to plain type
(not bold).

19 Repeat the import operation. You will receive an error message like the following:

Tutorial 2: Creating a Company Phone List Chapter 3:

26 InData User’s Guide

As this message indicates, it is illegal to change format styles within a prototype
statement, including the opening and closing chevrons.

On Your Own
This completes the second InData tutorial. If you like, you can Revert to Saved
and experiment further with the prototype and data importing process. In par-
ticular, you may want to add some additional fields to the prototype. The complete
records in the data file contain the following fields:

◆ last name
◆ first name
◆ phone extension
◆ title
◆ department
◆ home address
◆ city
◆ home phone
◆ picture filename

Ignore the last field for the moment; we’ll cover picture importing in Tutorial 5.
Try adding the remaining fields to the prototype and reimporting data. The file
Completed Tutor_2 in the Tutorial folder presents one example of a more compli-
cated prototype for this data.

Tutorial 3: Advanced Data Importing
This tutorial will build on a slightly enhanced version of the template you cre-
ated in the last tutorial. In it, you will learn to perform the following operations:

◆ Adding additional (non-prototype) text to regular document pages. This will
enable you to understand the prototype in the context of an entire document.

◆ Removing extra blank lines via conditional importing.

◆ Constructing new text out of the imported data.

1 Open the file Tutor_3 in the Tutorial folder.

This file is set up much like the file we created for Tutorial 2. It has been modi-
fied to use facing pages appropriate for double-sided printing. The header on the
master page has been constructed so that the page number is always at the out-
side edge of the page, and the picture frames for the Poole logo now appear in the
outside bottom corner of each page.

2 Turn to the master page for this document and examine the header text frames,
noticing how the page number and header have been positioned in each one. Note
also where the picture frames have been placed on each page.

InData Tutorials Tutorial 3: Advanced Data Importing

InData User’s Guide 27

3 Return to page one of the document and examine the prototype in the main text
frame. It looks like this:

«fields last, first, ext, title, dept, address, city, phone¶
«last», «first» . Ext. «ext»¬
«title» («dept» Dept.)¬
«address», «city»¬
«phone»¶

The fields statement is longer and describes four more fields than the previous
one. Two additional lines are included in each formatted record, containing the
employee’s home address and phone number, set in a smaller type size than the
rest of the entry. A formatted record will look something like this:

Shakespeare, William . Ext. 1122
Head Writer (Marketing Dept.)
1021 Arden Way, Avon
555-1212

We’ll now begin making changes to this document.

Adding a Title on the First Page
The first modification we’ll make is to add a title on page one of the document.
We’ll do this by creating a text frame on page one outside of the main text thread,
which goes through the large frame on each page.

4 Resize the text frame on page 1 so that its top edge is about 1 inch below the top
margin (i.e., at the 2" or 12 pica position on the ruler).

5 Create a new text frame just under the top margin, extending from the left to the
right margin. Make the frame about 1/2" high.

6 Enter the following text into the text frame:

Poole Asteroid Mining Company Phonelist

Now we’ll format the title text by applying a InDesign style sheet.

7 Leave the text tool in the title you’ve just created. Then choose the Type=>Para-
graph Styles menu path to open the Paragraph Styles window (if necessary) and
then click on the Title style to apply it to the current paragraph. Notice how the
title becomes centered, boldface and larger.

Because the text frame you just created is not part of any text chain and does not
appear on the master page, it will appear only on page one of the document, with
the exact content and in the exact position as when you set it up.

»

Tutorial 3: Advanced Data Importing Chapter 3:

28 InData User’s Guide

Avoiding Unwanted Blank Lines From Missing Fields
If we imported data into the document right now, some of the resulting name and
address entries would have unwanted blank lines within them:

Calvin, John. Ext. 2873
VP Human Resources (Admin Dept.)
264 Poli Way, Shellville
444-9584

Caxton, Thomas. Ext. 2846
Accountant (Admin Dept.)
3421 W. 120th St., Bright Valley

missing phone

Donne, Anne . Ext. 2190
Secretary (Admin Dept.)
3981 W. 115th St., Bright Valley
444-5984

Thomas Caxton’s record has no data in the phone number field. However, InDa-
ta still puts a new line character into the document at that point because it is a
literal character within the prototype.

InData is able to conditionally import fields into the document. Using this fea-
ture, we can eliminate the blank lines by telling InData to import certain fields
and their corresponding new line characters only if the fields are not empty. Here
is an example of how this is done (but don’t type anything into your prototype
yet):

«if address is not empty»«address»¬
«endif»¶

These prototype statements tell InData to insert the contents of the field named
address into the document followed by a new line character only if that field is not
empty.

Sometimes, however, it is the new line character itself that needs to be made part
of the condition. Here is an example:

«lastname», «firstname»«if title»¬
«title»«endif»¶

In this case, the title field is being conditionally imported. If a record has a title,
then InData will insert a new line character after the name line. However, if a
record has no value in the title field, then this new line character is not needed.
That is why the new line is placed before the title field placeholder but inside the
if…endif conditional statement.

InData Tutorials Tutorial 3: Advanced Data Importing

InData User’s Guide 29

This prototype also illustrates a short version of the if field is not empty statement:
the is not empty part is actually optional.

We’ll add conditional importing statements to both the address and phone fields
in our prototype.

8 Modify the prototype so that both the address and phone fields are imported only
if they are not empty. Only include the city field if the address field is not empty.
You may want to try this on your own, before looking at the completed prototype
below.

This is how the modified prototype will look:

«fields last, first, ext, title, dept, address, city, phone¶
«last», «first» . Ext. «ext»¬
«title» («dept» Dept.)«if address is not empty»¬
«address», «city»«endif»«if phone»¬
«phone»«endif»¶

There are a couple of tricky aspects to this prototype. First, the if statements need
to place the new line characters before their corresponding fields, so that new
lines are created only if there is data in the field. Secondly, the final endif state-
ment comes before the final new paragraph mark because the latter should not
be imported conditionally; each record should always end with a paragraph
break.

This section has illustrated only the simplest uses of InData’s conditional import-
ing features. See Chapter 6 for an in-depth discussion of these capabilities.

Adding Room Numbers
The last modification we’ll make to this file is to add each person’s office location
to the formatted record. In this company, in-house phone numbers in the ext field
are created by starting with a 2, then adding the floor of the building the person’s
office is on, and finally adding the two-digit room number after it. For example,
an extension of 2287 means that person’s office is on the second floor in room 87.
So, to add floor and room numbers to the outputted records, we need to extract
this information from the ext field.

InData has a character operator that allows you to do just that. Here is its gen-
eral format:

«character start to end of field»

where start and end are numbers indicating which characters to extract (num-
bering begins at 1), and field is the name of a field from the fields statement. If
you want only one character from the field, then the to end part may be omitted.
If you want all the characters starting at a given location, then use the form

»

Tutorial 3: Advanced Data Importing Chapter 3:

30 InData User’s Guide

length(field) for end, which stands for the total length of the field’s contents. The
keyword character may be abbreviated to char.

We’ll add a line to each imported record below the name and extension line, con-
taining the floor and room number of their office. Here is how a formatted record
will look:

Johnson, Samuel. Ext. 2456
Floor 4, Room 56
Installation Planner (Customer Support Dept.)
123 North Cedar Street, Berkeley
555-6677

9 Add char expressions and literal text to the prototype to produce records like the
one above. You may want to try this on your own before looking at the complet-
ed prototype.

Here is what the finished prototype looks like:

«fields last, first, ext, title, dept, address, city, phone¶
«last», «first» . Ext. «ext»¬
Floor «char 2 of ext», Room «char 3 to 4 of ext»¬
«title» («dept» Dept.)«if address is not empty»¬
«address», «city»«endif»«if phone»¬
«phone»«endif»¶

The words “Floor” and “Room” are literal text placed into the prototype. The
appropriate characters extracted from the ext field are placed after each word.
Don’t forget to change the font size of the line you’ve added (if desired).

As this prototype indicates, it’s perfectly all right to use a field more than once in
a prototype. Incoming fields can be placed in any order within a prototype, be
used more than once, or be ignored altogether. It’s completely up to you as the
prototype creator.

Don’t worry if some of the prototype lines wrap to the next column. The format-
ted records will fit within the column just fine.

10 If you like, save the file as a template for later use.

Import the Data
Now we’re ready to import the data.

11 Check to make sure that the data format is set to Tab-delimited.

»

InData Tutorials Tutorial 3: Advanced Data Importing

InData User’s Guide 31

12 Select InData=>Import from File…, and then select the Poole employees data file
once again.

When all of the data is imported, you will have completed tutorial number three.
In the next tutorial you will learn some more advanced uses of conditional state-
ments in InData.

Tutorial 4: Adding Department Headlines
In this tutorial we’ll modify the prototype from Tutorial 3 to add reversed type
department headlines. The formatted records will look something like this:

Sales

Beaumont, Christopher . Ext. 2637
Floor 6, Room 37
Sales Representative
2312 W. 112th St., Bright Valley
444-3322

1 To begin this tutorial, either open the file you created in the last tutorial (assum-
ing that you didn’t import data into your only copy) or open the file Tutor_4 in the
Tutorial folder. If you choose the latter file, you will notice small formatting changes
in the prototype.

Comparing the Current and Previous Records
The records in the data file are sorted by department and then by last name; the
“Admin” (administration) department comes first, with all its members in alpha-
betical order, followed by the alphabetized members of the Marketing depart-
ment, and so on. We want to create a new department headline every time the
department changes (and only at those times). To do this we’ll use the if state-
ment.

InData’s if statement is more powerful than the simple use we made of it in the
last tutorial might suggest. For example, it may also be used to compare the con-
tents of a field to a literal value, to the contents of another field, or to the value of
the same field in the previous record. It’s the latter operation that we want.

2 First of all, remove the dept field placeholder and its accompanying literal text—
“ Dept.)” and the preceding opening parenthesis—from the prototype.

We’re going to place the department headline before the first record for each
department, so we’ll be adding to the prototype on a line between the fields state-
ment and the last field placeholder.

Tutoria 4: Adding Department Headlines Chapter 3:

32 InData User’s Guide

3 Create a new line for the dept placeholder by entering a carriage return at the
end of the fields statement, and type in the dept placeholder on that line. Set the
department placeholder in 16 point boldface Helvetica type.

The prototype should now look something like this:

«fields last, first, ext, title, dept, address, city, phone¶
«dept»¶
«last», «first» . Ext. «ext»¬
Floor «char 2 of ext», Room «char 3 to 4 of ext»¬
«title»«if address is not empty»¬
«address», «city»«endif»«if phone»¬
«phone»«endif»¶

As it currently is, the prototype tells InData to place the contents of the dept field
before every record. Our next step is to tell InData to include the dept field only
if it has changed since the last record.

4 Add this if statement and its closing endif statement to the prototype so that the
dept field is imported only if its contents are different from that in the previous
record:

«if dept is not previous dept»

This statement compare the contents of the dept field in each record with what
was present in that same field in the previous record. If the dept field changes,
then InData will perform the actions that lie between the if statement and its
closing endif statement.

Here is the completed prototype:

«fields last, first, ext, title, dept, address, city, phone¶
«if dept <> prev dept¶
«dept»¶
«endif»«last», «first» . Ext. «ext»¬
Floor «char 2 of ext», Room «char 3 to 4 of ext»¬
«title»«if address is not empty»¬
«address», «city»«endif»«if phone»¬
«phone»«endif»¶

As this prototype indicates, the previous keyword may be abbreviated as prev, and
the is not operator can be abbreviated as <> (the not equal sign).

We’ve placed the if statement on a separate line above the dept field placehold-
er, ending it with a carriage return instead of a right chevron mark so that the
carriage return does not become a literal character in the prototype and produce

»

»

InData Tutorials Tutorial 4: Adding Department Headlines

InData User’s Guide 33

blank lines in the formatted records. However, we could have written that part of
the prototype as:

«if dept is not prev dept»«dept»¶
«endif»

This is purely an aesthetic choice; either form is correct. Note that the endif state-
ment comes after the carriage return following the dept field placeholder since
the carriage return itself should only be included if the dept field is.

We also chose to set the if statement in smaller type than the dept placeholder, to
minimize its visual prominence as we look at the prototype. Since it won’t appear
in the formatted data, we are free to format it as desired.

You might wonder if this prototype will work correctly on the first record of the
data file. The answer is yes, since the previous contents of any field in the first
record are considered empty (null).

Creating Reversed Type with Paragraph Rules
Now we’ll turn to the task of setting the paragraph format for the dept field
placeholder.

5 Place the cursor in the paragraph holding the dept field placeholder. Bring up the
Paragraph dialog by choosing Type=>Paragraph… from the dialog’s pop-up
menu. Change the following settings (you may alter the numeric values if you
like, to taste):

Space Before: 0.5" (36 pt)
Space After: 0.2" (14.4 pt)
Keep with Next: 1
Alignment: Centered

6 Select the entire dept field placeholder and change its color to white.

The placeholder will temporarily disappear, but it will reappear as soon as we add
black rules to the paragraph:

7 Without changing the insertion point, select Paragraph=>Paragraph Rules….
from the Paragraph palette’s popup menu. Add a 22 point black rule above the
paragraph. Set the values of the Offset: field so that the rules form a black frame
behind the dept field placeholder.

The idea here is to get the rule to cover the text completely. Since the text is
white, it will stand out against the black rule. We found that an offset of about
.083" (-6 pt) works well for 16 point boldface Helvetica type. If you’re using a dif-
ferent font or size, you may need to experiment with this value a bit.

Tutorial 4: Adding Department Headlines Chapter 3:

34 InData User’s Guide

Here is our completed Paragraph Rules dialog:

8 Save the file at this point as we’ll want to use it more than once. If you like, save
the file as a template for repeated use.

9 Import the Poole employees data file into the document. Several department
headlines will be created along with the formatted employee records.

Forcing a Paragraph to the Top of a Column
Sometimes, you want to force a paragraph to the top of a column or page. In this
example, you might want each department to start its own column. Here is how
to accomplish this.

10 Revert to the last saved version of the document, or open the template you cre-
ated. (If you didn’t save it, you can open the file named Tutor_5).

11 Place the cursor in the paragraph containing the dept field placeholder, and then
open the Paragraph palette. Click on the palette’s slide-out menu, and select the
Keep Options... item. Then, select In Next Column from the Start Paragraph
menu. Close all dialogs.

This will force the department header to the top of the next column on the page:

However, when you import the actual data, the initial fields and if statements will
not be placed into the document, and the first department headline will start at
the top of the first column on page 1 of the document.

InData Tutorials Tutorial 4: Adding Department Headlines

InData User’s Guide 35

12 Import the data file into the document again, and then examine the document’s
pages to verify that the department headlines are placed at the start of new
columns.

This completes the fourth tutorial.

Tutorial 5: Importing Pictures
In this tutorial, we’ll conditionally import graphics into the document. We’ll final-
ly be using the last field of each data record, which contains the name of the file
containing each person’s photograph (if one is available).

Note: to save space, only one photograph file has been placed on the InData dis-
tribution, and this same file is used for three different people in the data file.
Despite these unrealistic aspects, however, you will still be able to get a good
sense of how picture importing works from this tutorial.

1 Open the file named Tutor_5 in the Tutorial folder. Modify the space before setting
of the department paragraph as in the previous tutorial. Save the file to any
name you choose within the same folder before proceeding, or pictures will not
import properly.

Adding a Picture Frame to the Prototype
The first step required in importing pictures with InData is to add a picture
frame to the prototype.

2 With the rectangular frame tool, draw an approximately one inch square picture
frame in some convenient location (in the empty right hand column or on the
pasteboard, for example).

3 With the selection tool, make sure the just-created picture frame is selected, and
then choose Cut from the Edit menu.

4 With the type tool, place the cursor between «endif» and «last» in the prototype.
Begin a new paragraph by entering a carriage return.

5 Without moving the cursor, paste the cut picture frame into the prototype, and
then enter another carriage return.

Tutorial 5: Importing Pictures Chapter 3:

36 InData User’s Guide

This part of your prototype will now look like this:

«dept»
«endif»¶

¶
«last», «first» . Ext. «ext»¬
Floor «char 2 of ext», Room «char 3 to 4 of ext»¬
«title»«if address is not empty»¬
«address», «city»«endif»«if phone»¬
«phone»«endif»¶

Continue the prototype by modifying the paragraph containing the picture frame,
setting the space before to .08” (6 points) and the space after to 0. Set its keep
with next setting to 1 line (so the picture always stays with corresponding entry).

Specifying the Picture Filename in the Prototype
First we need to add the final field in the data file to the prototype’s fields state-
ment.

6 Add the field name pix to the end of the fields statement. Be sure to place a
comma before it.

The set filename command is used to tell InData what field contains the picture
filename for any anchored picture frames within the prototype. Its general for-
mat is:

«set filename of picture n to field»

where n indicates which picture frame within the prototype is meant, and field
indicates which data field contains the name of the picture file to import. We want
to set the field for the first (and only) picture frame in the prototype to pix.

7 Add a set filename statement before the last field placeholder. You may end the set
filename statement with a carriage return, placing it on its own line within the
prototype, if you omit the right chevron.

»

InData Tutorials Tutorial 5: Importing Pictures

InData User’s Guide 37

Here is how this part of the prototype now looks:

¶
«set filename of picture 1 to pix¶
«last», «first» . Ext. «ext»¬

Making the Picture Import Conditional
Of course, we only want to include the picture frame if the pix field contains a file
name—if it’s not empty, in other words.

8 Add an if statement to the prototype so that the picture frame, its associated
paragraph mark, and the set filename statement are included only if the pix field
is not empty.

Here is one way to accomplish this:

«dept»
«endif»«if pix¶

¶
«set filename of picture 1 to pix»«endif¶
«last», «first» . Ext. «ext»¬

The if statement precedes the picture frame, and the endifcomes after the set file-
name statement. A right chevron now closes the set filename statement, and the
paragraph mark closes the endif statement.

Specifying Global Picture Attributes
When you import a graphic into a picture frame, it may or may not be sized cor-
rectly for the frame. InData allows you to specify how to position and size import-
ed graphics within their picture frames in the InData: General Preferences dia-
log, which you reach by selecting InData=>Preferences=>General… from the
InDesign menu.

»

»

Tutorial 5: Importing Pictures Chapter 3:

38 InData User’s Guide

9 Set the Default picture position to Center, Size to Fit, w/o Distortion.

Import the Data
The prototype is now ready to accept data.

10 Import the Poole employees data file into the document.

Three of the formatted records on the first page will contain photographs. Here
is an example:

Pembroke, Mary. Ext. 2839
Floor 8, Room 39
Accountant
3042 W. 118th St., Bright Valley
555-9920

(To save space in the InData distribution, the same picture file is used for all
three records. For the same reason, the picture file has been compressed in its
range of grey, so its quality will not match that of normal scanned photographs.)

InData Tutorials Tutorial 5: Importing Pictures

InData User’s Guide 39

When InData Can’t Find a Picture File
When InData can’t find a picture file called for during data import, you’ll see an
error message like this one:

Importing will stop immediately. You can tell InData to ignore missing picture
files by turning on Ignore missing picture files in the InData: General Prefer -
ences dialog.

This completes the fifth InData tutorial.

Tutorial 6: Adding Document Headers and Footers
InData can also produce running headers and footers which change from page to
page, based on the contents of the imported data. For example, a telephone direc-
tory might have the last names of the first and last people on each page in the top
outside corner. In this tutorial, you will learn to create such running headers and
footers.

There are three basic steps to creating a running header or footer:

◆ Designating one or more fields (or an expression involving them) as the
source of the running header/footer text. This involves placing a mark or
marked text in the prototype.

◆ Adding a mark reference to the header or footer text frame on the docu-
ment’s master page, which serves as a placeholder for the ultimate related
imported data or expression, and specifying its characteristics.

◆ Importing the data in the usual way. InData creates the running headers and
footers after all records have been imported and formatted.

Although running headers and footers will be created automatically when the
data is imported, they are not updated automatically if you make subsequent
changes to the formatted records. However, you can ask InData to update them
at any time. We’ll discuss this process in Chapter 9.

To begin this tutorial, we’ll set some global InData preferences.

Tutorial 6: Adding Document Headers and Footers Chapter 3:

40 InData User’s Guide

1 Before opening any tutorial file, select InData=>Preferences=>Data… from the
InDesign menu. Set the data format to Tab-delimited.

Since no document is currently open, we have just set the default data format for
all import operations. InData’s preferences work the same way as InDesign’ own
preferences do in this respect. You may still set an individual document’s pref-
erences by setting InData preferences while that document is open, and you may
always override default settings by explicitly changing them with the InData con-
trol panel before starting an import operation.

2 Set InData’s global default document view during update behavior by selecting
InData=>Preferences=>View… from the InDesign menu and then specifying the
mode you prefer using.

We’re now ready to open the file for this tutorial.

Creating a Mark in the Prototype
3 Open the file named Tutor_6 in the Tutorial folder. Save the file in the same fold-

er to any name you choose.

We’re going to modify this document’s header so that it includes the name of the
first department listed on each page.

First, we’ll modify the department field placeholder so that we can use it in the
running header.

4 Edit the dept field placeholder so that it reads as follows (we’ve omitted the
reversed type and rule):

«put dept marked "D"»

This statement tells InData to insert the contents of the dept field as this point
in each imported record—just as «dept» did before—and to give it the name D.
The form «field» is short for «put field» in general, and the marked keyword assigns
a name to the dept field placeholder which can be used to create running headers
and footers.

You may wonder why we have to assign a new name to the dept field when it
already has one. The marked keyword is actually quite flexible, and it may be used
to mark not only field names but any expression; char 1 of lastname, for example.
In the latter case, a name needs to be assigned to the expression in order to refer
to it in the running headers or footers.

Note that all InData mark names consist of a single letter whose case is ignored
(d is the same as D).

InData Tutorials Tutorial 6: Adding Document Headers and Footers

InData User’s Guide 41

Adding a Mark Reference to the Master Pages
5 Turn to the document’s master pages and position them so that you can edit the

left header text frame. You may need to change the document view to do so.

Currently the header looks like this:

D Poole Asteroid Mining Company Phonelist

It contains the page number, followed by a tab, followed by the text “Poole Aster-
oid Mining Company Phonelist.” We’re going to replace the latter text with the
name of the first department on each page.

6 Replace the text Poole Asteroid Mining Company with Dept.

This text will become a mark reference for mark D, and thus serve as a place-
holder for the contents of the first department field on each page. In the next step,
we’ll link this text to the mark we set up previously. First, however, we’ll add
some placeholder text to the right master page header.

7 Move to the header text frame on the right master page, and replace the text
Poole Asteroid Mining Company with Dept also.

As what we’ve done indicates, the text used as mark references in running head-
ers is simply any literal text that you choose to use. It requires no special chevron
marks. It’s a good idea to choose text that will remind you of what will replace
it when data is imported. Thus, we chose “Dept” for our headers. These mark ref-
erences in running headers and footers also should be formatted as you want
them to look in the final document.

Informing InData About the Mark Reference
The final step in setting up the running headers is to let InData know about the
mark reference text you’ve created and to associate it with a mark in the proto-
type.

8 Move back to the left master page header text frame, and highlight the text Dept
with the cursor.

9 Select Make Header/Footer from the InData menu.

The Make Header/Footer dialog will appear. This dialog allows you to associate
the first or last occurrence of a specified mark with the text you have highlight-
ed, transforming the latter into a mark reference.

Tutorial 6: Adding Document Headers and Footers Chapter 3:

42 InData User’s Guide

Choosing first means that the first instance of the marked field or expression on
each page (or spread if spread is checked) will be placed in the placeholder’s loca-
tion on the page. Similarly, turning on the last radio button means that the final
instance of that marked field or expression on each page (or spread) will go into
the page’s header (or footer).

Since we are currently on the left master page, we want the first instance of the
department field to go into the header; on right document pages, we’ll want the
last instance. Here is how the headers on a completed spread might look after
data importing:

2 Admin Marketing 3

First, we’ll designate the text we selected before opening the Make Header/Foot-
er dialog to refer to the first instance of the department field on the page:

10 Change the settings in the dialog to associate the placeholder with the first occur-
rence of mark D—the dept field in this case—on the page.

11 Check Reference marks from previous pages, so that if no dept field in-line head-
ers appear on a document page, the most recent one from a previous page will be
used. We’ll just use the department name as is, without appending anything to
it.

12 Click OK to leave this dialog.

InData now views the text as a mark reference.

13 Move to the right master page, and select Dept in its header text frame.

Selects which occurrence of the
specified marker is to be used.

Specifies how far down the page
(# lines) to look for the “first” marker.

Marked text can be carried over
from a previous page when no

marked text is present, with

optional added text
(e.g. “continued”).

InData Tutorials Tutorial 6: Adding Document Headers and Footers

InData User’s Guide 43

14 Select InData=>Make Header/Footer.

15 Adjust the settings to select the last occurrence of the marker D on the spread.
Check Reference marks from previous pages. Then click OK to exit from the dia-
log.

You’ve now associated the placeholder you created on the right master page with
mark D. The document is now ready for data importing.

Save the Document as a Template
Before importing data, save the document as a template, by selecting Save As…
from the Filemenu, entering a filename into the space, and selecting the InDe-
sign Template menu option. Then click OK to complete the save.

This step is a good idea in general for two reasons. First, it allows you to correct
the prototype and try a data import operation a second time if there are problems
the first time. Second, it enables you to create new, additional documents using
these same formats at a later date.

Import the Data
16 Return to page 1 of the document, and place the cursor anywhere within the pro-

totype. Then import the Poole employees file into the document.

Once data importing is complete, InData will begin to work on the headers and
footers, and a second status dialog will appear to indicate its progress:

17 Examine the header on each page (after page 1) of the completed document, not-
ing how the text Dept has been replaced by the departmental affiliation of the
first or last person on that page.

If your document’s headers are not correct, you can examine the file Completed
Tutor_6 in the Tutorial folder, which has the completed prototype and the header
mark references correctly installed.

Tutorial 6: Adding Document Headers and Footers Chapter 3:

44 InData User’s Guide

Tutorial 7: Automated Document Creation
This tutorial introduces automated document building with InData and the
native automation facilities provided by the Windows and Macintosh environ-
ments. The first subsection of this tutorial appears in two versions; Windows
users should skip ahead to the Windows version.

Macintosh Systems: AppleScript
On Macintosh systems, you can automate data importing with InData and cre-
ate the resulting InDesign documents via the AppleEvent facility. This tutorial
will introduce you to these InData capabilities. It assumes that you are familiar
with the basics of AppleScript and that this facility is active on your Macintosh
(see Chapter 12 for details).

In this tutorial, we will first demonstrate how the importing process works with
AppleScript and then guide you through the creation of a scriptable InDesign
document.

1M Make sure that InDesign is running. Close all open documents.

2M Double click on the AppleScriptDemo file in the Tutorial folder. This file is a Script
Editor file, and that application will be started automatically:

The script appears in the lower part of the window. The buttons just above the
script area control execution of the script.

InData Tutorials Tutorial 7: Automated Document Creation

InData User’s Guide 45

3M Click on the Run button, and then select the file Tutor_7 in the resulting file open
dialog (the file is located in the InData Tutorial folder).

Once you have selected the file, InDesign will become active and two data import
operations will occur automatically. When they have completed, the resulting file
will be saved as Automated Tutorial 7, and the InDesign file will be closed. Finally,
control will return to the AppleScript Editor application.

4M Exit from the AppleScript Editor and return to InDesign. Open and examine the
Automated Tutorial 7 file and verify that records have been imported and formatted.

Macintosh users should skip the next subsection.

Windows Systems: VBScript
On Windows systems, you can automate data importing with InData and create
the resulting InDesign documents via Windows Automation. You can use any
supported language: Visual Basic, VBScript (which we use here as an example),
JScript, and so on. This tutorial will introduce you to these InData capabilities.
(see Chapter 12 for more details).

In this tutorial, we will first demonstrate how the importing process works with
VBScript and then guide you through the creation of a scriptable InDesign doc-
ument.

1W If InDesign is running, close all open documents.

2W Start Notepad (or any Windows editor), and open the Tutor_7.vbs file in the Tutor-
ial folder. This file is a VBScript file, and it contains the following text:

'
' InData Tutorial 7 Companion Script
'
Option Explicit
Dim fso, dataFolder, myInDesign, myRecordCount, idDontDisplayAlerts
' From InDesign's type library:
idDontDisplayAlerts = 1699640946
Set fso = CreateObject("Scripting.FileSystemObject")

dataFolder = fso.GetFile(WScript.ScriptFullName).ParentFolder.Path & "\"
Set myInDesign = CreateObject("InDesign.Application")
' You must *always* activate InDesign before importing
' (i.e., bring it to the front), or InData will hang after
' finishing until you do so.
myInDesign.Activate

' Open our demonstration document
myInDesign.UserInteractionLevel = idDontDisplayAlerts
myInDesign.Open (dataFolder & "Tutor_7.indt")

Tutorial 7: Automated Document Creation Chapter 3:

46 InData User’s Guide

' Import the employee list into the "first" substory of the
' "Poole people" story, using the "Poole proto" prototype story.
myRecordCount = myInDesign.InDataImportFromFile(dataFolder & "PooleEmp.txt",

"Poole proto", "Poole people", "first")
' Ditto, but import into the "second" substory of the "Poole people" story.
myRecordCount = myInDesign.InDataImportFromFile(dataFolder & "PooleEmp.txt",

"Poole proto", "Poole people", "second")
myInDesign.ActiveDocument.SaveAs (dataFolder & "Automated Tutorial 7.indd")
myInDesign.ActiveDocument.Close

After some initial setup activities, the script determines the current folder loca-
tion and then starts InDesign. Next, it opens the document we will use.

In the main part of this script, the two myInDesign.InDataImportFromFile state-
ments (method calls) are where InData is used to actually import the data, using
the specified prototype story, into the specified story and substory.

Finally, the resulting document is saved and then closed.

3W Exit from Notepad (discard any changes). Navigate to the InData Tutorial folder
and double click on the script’s icon. The import operation will begin automati-
cally.

4W Return to InDesign. Open and examine the Automated Tutorial 7 file and verify that
records have been imported and formatted.

Preparing a Document for Automated Data Importing
(Windows and Macintosh)
Next, we will modify our Poole employee address list document for AppleEvent
or Visual Basic scripting.

5 Open the InDesign template you created in Tutorial 6 (or the file Completed Tutor_6
in the Tutorial folder).

The first step is to move the prototype from the target text frame for the import-
ed data records to a separate text frame on the pasteboard. Placing the prototype
in the target text frame is just one of the options for InData prototype placement
(this topic is discussed in detail in Chapter 4).

6 Select the entire prototype on page 1 of the document and cut it to the clipboard.
Then, create a new text frame on the pasteboard to the right of page 1 and paste
the prototype into it. Finally, save the document.

InData Tutorials Tutorial 7: Automated Document Creation

InData User’s Guide 47

The document will now look something like this:

The prototype is located in a text frame on the pasteboard, and the target text
frame on the document page is empty.

Next, we will verify that the document is still functioning properly by importing
a few data records.

7 Click anywhere within the text frame containing the prototype, and then select
InData=>Use Story as Prototype from the menu. Doing so will cause a check
mark to appear next to that menu item.

8 Click in the text frame on page 1 of the document, and then select InData=>
Import from File…. Select the Poole employees data file from the file list, and
then click OK. If desired, use the InData control panel’s Range… button to spec-
ify just the first few records of the data file. Modify any other settings from the
control panel as approriate. When you are ready to begin importing, click the
Start button.

The records should be imported and formatted as happened previously. Note that
the prototype remains unchanged in its text frame on the pasteboard when
importing is done in this way.

9 Select File=>Revert to restore the saved version of the document.

The same process is used for automated data importing. We will now continue to
set up our document for data importing via AppleScript or Visual Basic.

Naming Stories
In order to refer to specific text frames in a InDesign document within a script,
we must assign labels to them. To do so, we assign a name to each story (discrete
text thread) to which we will want to refer.

A name may be assigned to the current story—the story currently containing the
cursor—with the InData=>Name Story… menu item, which brings up the fol-
lowing simple dialog:

Tutorial 7: Automated Document Creation Chapter 3:

48 InData User’s Guide

You simply type the desired name into the text field and then click OK.

10 Place the cursor into the text frame containing the prototype. Then select InDa-
ta=>Name Story…, and assign the story the name Poole proto .

11 Using the same technique, assign the name Poole people to the main text thread
on document page 1.

Named stories may be similarly divided into substories: named subsections of a
named story. We will define two substories of the Poole people story.

12 Make sure that the cursor is still with the text frame containing the Poole people
story. Then select InData=>Name Substory… from the menu, and assign the
name first to the substory. The substory name will appear in the text frame.

13 Create a second substory, named second, in a similar manner. Save the document
as a template named My Tutorial 7.

Macintosh: Prepare the AppleScript
Next, we will prepare the script which will control the automated importing
process. (Windows users should skip ahead to the next subsection.)

14M Open the AppleScriptDemo file in the Tutorial folder by double clicking on it or open-
ing it from within the AppleScript Editor application.

15M Immediately select File=>Save As… from the menu and give the new file the
name My Script.

The existing script will require only minor changes for use with your document:

-- Find out where the InDesign document is, and from that compute
-- the containing folder.
set demodoc to (choose file with prompt "Where is “Tutor_7”?" of type {"InDd"})
tell application "Finder"

-- Extract the folder name
set demofolder to (container of demodoc) as text

end tell
tell application "InDesign 2.0.1"

InData Tutorials Tutorial 7: Automated Document Creation

InData User’s Guide 49

-- You must *always* activate InDesign before importing (i.e., bring it
-- to the front), or InData will hang after finishing until you do so.
activate
-- Open our document.
open demodoc
-- Import employee list into the "first" substory of the "Poole people" story,
-- using the "Poole proto" prototype story.
import data from file (demofolder & "PooleEmp.TXT") ¬

into story "Poole people" substory "first" using prototype story "Poole proto"
-- Ditto, but import into the "second " substory of the “Poole people” story.
import data from file (demofolder & "PooleEmp.TXT") ¬

into story "Poole people" substory "second" using prototype story "Poole proto"
save document 1 to file (demofolder & "Automated Tutorial 7")
close document 1 saving no

end tell

The script begins by asking the user where the InDesign document is and then
determining its folder location.

The main work of importing happens within the tell application “InDesign” … end
tell portion of the script. First, the InDesign application is activated, then the doc-
ument file is opened. The two import data statements are where InData is used to
actually import the data, using the specified prototype story, into the specified
story and substory. Finally, the resulting document is saved and then closed.

The underlined parts of the script will need to be modified for use with your doc-
ument.

16M Replace the first underlined item—the document file name—with the name of
your document, probably My Tutorial 7. Then replace the second underlined item—
the name to save the file under—to a name of your choice (perhaps My Automat-
ed Tutorial 7).

If you are using InDesign version 1.5, then you will also need to change the ver-
sion number in the tell application statement from 2.0.1 to 1.5.

Save the script after you have made your changes.

Windows: Prepare the VBScript
Next, we will prepare the script which will control the automated importing
process. (Macintosh users should skip the next subsection.)

14W Open the Tutor_7.vbs file in the Tutorial folder by right clicking on it and selecting
Edit or by opening it from within any text editing application.

15W Immediately select File=>Save As… from the menu and give the new script the
name My VB Script.vbs. Be sure to save the file as Text format.

50 InData User’s Guide

Tutorial 7: Automated Document Creation Chapter 3:

InData User’s Guide 51

The existing script will require only minor changes for use with your document:

...
' Open our demonstration document
myInDesign.UserInteractionLevel = idDontDisplayAlerts
myInDesign.Open (dataFolder & "Tutor_7.indt")

...
myInDesign.ActiveDocument.SaveAs (dataFolder & "Automated Tutorial 7.indd")
myInDesign.ActiveDocument.Close

In these excerpts, we specify the InDesign document’s name, and then later save
the output file to a different name.

The underlined parts of the script will need to be modified for use with your doc-
ument.

16W Replace the first underlined item—the document file name—with the name of
your document, probably My Tutorial 7.indd. Then replace the second underlined
item—the name to save the file under—to a name of your choice (perhaps My Auto-
mated Tutorial 7).

Save the VBScript after you have made your changes.

Perform the Automated Import Operations
(Windows and Macintosh)
You are now ready to perform the automated import.

` 17 Run your completed script, in the same manner as before. When it has complet-
ed, open the new document in InDesign to verify that everything worked prop-
erly. If there are any problems, compare your file to the file Automated Tutorial 7 in
the Tutorial folder.

This script imports the same data file into the document twice, probably not
something you would want to do in real life. However, it is very common to want
to import a large data set via a number of smaller batches. This topic will be dis-
cussed in more detail in Chapter 12.

Congratulations!
You have completed the final InData tutorial. The next several chapters of this
manual cover data importing with InData, from the very basics in Chapter 4 to
advanced prototype capabilities in Chapters 6 through 10 and more about auto-
mated document creation in Chapter 12.

InData Tutorials Tutorial 7: Automated Document Creation

52 InData User’s Guide

Tutorial 7: Automated Document Creation

4
Basic InData Operations

This chapter covers InData’s basic features, expanding on the concepts present-
ed in the tutorials. The first section contains a brief overview of the product to
enable experienced users of InDesign to get started using InData right away. If
you completed the InData tutorials in Chapter 3, you may decide to skip the first
section of this chapter.

A Quick Overview of InData
InData is used to import and format data exported as text from database and
spreadsheet applications into InDesign documents. (Note that InData cannot
read the original database or spreadsheet application files.) Data for importing
may also be created using a word processing program, or even created and pub-
lished entirely within InDesign.

There are three steps required to format such data using InData:

1 Create a document in InDesign, including an InData prototype, which specifies
exactly how each incoming data record is to be placed and formatted as it is
imported.

2 Designate the prototype.

3 Choose an import option from the InDesign InData menu, set any necessary
import parameters, and tell InData to begin importing.

The remainder of this section will look at each of these steps individually.

Prepare the InDesign Document
Setting up the InDesign document into which the data will be imported is the
first step in the process. You will need to create a new document, and then plan
and set up its layout. This generally includes these important components:

◆ The number, size, placement and other attributes of text frames on each doc-
ument page. This is accomplished by setting up one or more master pages for
the document.

InData User’s Guide 53

◆ The font, size and paragraph formats for document text. This is often accom-
plished by setting up style sheets specifying the desired character and para-
graph attributes.

In general, the text frame into which you plan to import data records should be
part of the automatic text thread in the document. That way, when imported
records fill one page, a new page will automatically be created by InDesign
(thanks to InFlow).

You can verify that a text frame on a document page is part of the automatic text
thread by placing the text cursor within it, and then clicking on the Object menu.
If the final item in the menu, Default Auto-Flow Thread, is checked, then the
frame is part of it. Note that the item will be disabled unless you are at a master
page.

The main text frame on the page is automatically part of the automatic text
thread when you create a new document with Master Text Frame checked. This
alone is almost always sufficient for documents not requiring multiple text
frames to achieve its desired page layout.

In other cases, you will need to create additional text frames by hand on the mas-
ter page and then thread them into the automatic text thread manually. For
example, to create a document for address labels, open a new document and leave
Master Text Frame unchecked. Next, create text frames on the master page of
the same size as an individual label, and place them in the same positions as the
labels themselves are arranged on a sheet. Then, place the insertion point inside
the first box, and select Object=>Default Auto-Flow Thread. Finally, thread the
output port of that frame to the input port of the next frame, and continue the
process until all of the text frames are connected.

The following illustration shows how the complete master page might look. (Your
can view text threads via View=>Show Text Threads).

You can examine the first of these sample documents yourself. It is located with-
in the InData Samples folder: Avery 5162 in the Avery Labels subfdolder.

A Quick Overview of InData Chapter 4:

54 InData User’s Guide

Create an InData Prototype
Once the document’s structure has been set up, we next create the InData pro-
totype. An InData prototype is a normal text story that defines how each field in
each record from the data file is to be positioned and formatted as it is import-
ed into the InDesign document.

The prototype is typically placed in a text box located on the pasteboard beside
page one of the document (although there are other options). Do not place the pro-
totype on the document’s master page.

The first line of a prototype is typically a fields statement, which is used to assign
symbolic names to each field of the data records. The statement consists of the
fields keyword, followed by a comma-separated list of field names, all enclosed in
chevron marks—« and »—which must surround all InData prototype statements
and expressions.

Here is a simple fields statement:

«fields fname, lname, title»

The data file this fields statement describes has three fields per record, which are
assigned the names fname, lname, and title for the purposes of the prototype. These
names need not be the same as the actual field names in the originating appli-

Basic InData Operations A Quick Overview of InData

InData User’s Guide 55

cation. Rather, they are completely arbitrary, and may be chosen as desired by the
user.

In fact, a fields statement is not technically required in a prototype. The automat-
ic names a through z are always assigned to the first twenty-six fields of the data,
regardless of whether there is a fields statement in the prototype or not. Thus, the
automatic field name b is equivalent to lname within the previous prototype.

Specifying the Formatting of Incoming Data
The remainder of the prototype consists of a sequence of literal text and field
placeholders and other InData statements. Field placeholders consist of the
field name—as defined in the fields or the letter corresponding to the field—
enclosed in chevron marks: «fieldname».

These field placeholders specify the placement and formatting for the actual data
records of the data file. Incoming data fields are laid out in the order given by the
prototype, and each field’s contents is automatically formatted in the same way
as its corresponding field placeholder. All character formatting—including any
character styles—of the field placeholders is carried over to the formatted data
records. Paragraph settings—including the paragraph style—are also carried
over from the prototype to the corresponding paragraphs of the formatted data.
InData thus not only processes the data records and arranges them as you like,
but also formats them as you instruct it to. Rather than having to format dozens
or thousands of records by hand, you format the prototype once, and InData does
the rest. And, if you use styles to specify character and paragraph formatting, you
can experiment with, and change your mind about, the way records are format-
ted even after the fact, again in one simple step.

This process is illustrated in the following diagrams; note how corresponding
fields in each successive record are constructed and formatted identically in the
InDesign document.

Crashaw Richard 928 St. Teresa Terrace Iconia NM 72637 373-291-2771
Greville Fulke 876 Caelica Lane Loredo TX 56293 747-828-2837

➥
«fields lname, fname, address, city, state, zip, phone¶

«fname» «lname»¬
«address»¬
«city», «state» «zip»¬
«phone»¶

➥
Richard Crashaw
928 St. Teresa Terrace
Iconia, NM 72637
373-291-2771

A Quick Overview of InData Chapter 4:

56 InData User’s Guide

Fulke Greville
876 Caelica Lane
Loredo, TX 56293
747-828-2837

We’ve expanded the spacing within the fields statement to make matching up the
field names and the corresponding data fields easier.

InData requires that the character formatting be consistent within each indi-
vidual field placeholder, including the enclosing chevron marks (or chevron mark
and paragraph mark). This makes sense since you would be requesting ambigu-
ous character formatting for a field if you changed the character attributes in the
middle of a placeholder.

Designating the Prototype
The second step in the import process is designating the prototype: informing
InData as to its location.When the prototype is placed in a text box on the paste-
board, this is accomplished by clicking in that text box with the text tool and then
selecting InData=>Use Story as Prototype from the InDesign menu. A check-
mark will appear next to this item whenever the prototype’s text story is current.

We’ll look at other ways to specify the prototype’s location later in this chapter.

Importing Data
Prior to importing data, you must place the text cursor into the (presumably
empty) text frame into which you want the formatted records to be placed. If your
target location is a non-empty text frame, then the imported records will replace
any text that is selected within the target text frame.

The data import process itself begins by choosing one of the Import… selections
from the InData menu. The simplest case is to select Import from File…. When
you do so, InData will present a dialog asking for the data file to import. Once you
select the data file, the InData control panel will appear on the screen (discussed
and illustrated later in this chapter).

From the InData control panel you may specify the data file format (via the
Data… button), the desired starting and ending records (via the Range… button),
and the screen update frequency (via the View… button), in addition to actual-
ly starting the import process by pressing the Start button.

These basic steps are elaborated in more detail in the InData tutorials in the pre-
vious chapter.

Reimporting Over Existing Data
In general, InData will replace all selected text in the target text thread with the
imported and formatted records. This has the following consequences in practice:

Basic InData Operations A Quick Overview of InData

InData User’s Guide 57

◆ If the text thread is empty, then the generated text will be placed into it.

◆ If the target text thread already has text in it, but no text is selected, the
newly generated text will be added to what is already there at the current
insertion point. For example, if you place the cursor at the beginning of a non-
empty text frame, then the new text will be added to the beginning of the text
thread, preceding the existing text.

◆ If some of all of the existing text thread is selected, then the formatted
records will replace only the highlighted text. Any additional, unselected text
will remain in the same relative position with respect to the new data
records.

◆ If the prototype is placed within the target text thread (discussed later), then
since it must be selected when importing begins, the newly formatted data
records will replace the prototype within the larger target text thread.

InData Prototype Fundamentals
This section will examine InData prototypes in more detail.

Where to Put the Prototype
Perhaps the most common problem for new users of InData is deciding where to
put the prototype within the InDesign document. It’s tempting, though incorrect,
to think that the prototype should go on the document’s master page, since that
is where information common to all pages goes.

As depicted in the preceding illustration, the InData prototype usually goes into
one or more text frames on the pasteboard of a regular document page, and not
on a master page. Master pages specify items that are replicated onto every doc-
ument page. By contrast, the InData prototype specifies the structure of incom-
ing data records, information that may be used to create many document pages
as data is imported. However, the prototype is not literal text that ought to be
copied to every document page, which is precisely what happens if you put the
prototype on the master pages.

document window text frame on pasteboard

A Quick Overview of InData Chapter 4:

58 InData User’s Guide

Placing the prototype into a pasteboard text frame on the first document page
has several advantages over locating it within the text frame containing the main
text thread:

◆ It makes it easy to re-import your data: once you’ve imported some data, you
can just edit the prototype on the pasteboard, select the entire target story,
and import again over the previously-imported data, all without copying and
pasting the prototype.

◆ It lets you prepare the prototype in a “congenial” environment. Complex pro-
totypes can be quite lengthy, much longer than any individual formatted
record. Using this method, you can create the prototype in larger text frames
that accommodate the extra length without spilling over onto multiple pages.
Using a larger text frame for the prototype than for the imported data has no
effect on the final results.

◆ In a related vein, you’ll often use “new frame” characters in your prototype to
force page or column breaks. Creating the prototype in several linked frames
on the pasteboard allows you to keep the entire prototype in one place, rather
than having it spread out over several pages.

You may select a text frame and designate it as the prototype with the Use Story
as Prototype option as many times as you like. The most recently designated text
frame is the one that will be used when an import option is chosen. This means
you could create several alternate prototypes, choosing the appropriate one just
before any given import operation.

Anytime you select the text frame currently designated as the prototype, the Use
Story as Prototype menu item will be checked when you pull down the InData
menu.

Alternate Prototype Placement
Prototypes may also be placed directly within the text frame that is the target for
the imported records (this was the method we used in the tutorials in Chapter 3).
In this case, designating the prototype is done slightly differently. If the prototype
is the only text within the target text frame, then you may simply place the cur-
sor within that story, without selecting any text, and the entire story will be
replaced by the import operation. If, on the other hand, there is any additional
text within the target text frame that is not part of the prototype (a title or table
heading, for example), then you must select the prototype portion of the story,
including any trailing carriage returns or paragraph marks, prior to selecting an
import menu option. Then, only the selected text will be replaced when data is
imported.

The following example will illustrate not only the highlighting method of select-
ing the prototype, but also the fact that InData need not be used only for the high-
ly regular, repeating documents, containing large numbers of records that we
have considered so far. It may be used anytime you wish to format data in a com-

Basic InData Operations InData Prototype Fundamentals

InData User’s Guide 59

plex way. For example, InData may be used to create tables from data stored in
spreadsheets (or in text data files, or even just in a text frame on the InDesign
pasteboard) which take full advantage of InDesign’s sophisticated typographic
features. Consider the following table:

The reversed type effects are beyond the capabilities of most spreadsheet pro-
grams, and InDesign paragraph styles cannot specify multiple character formats
within a single paragraph; the boldface and italic styles would need to be applied
by hand to each line of the table. However, InData can handle all of these styles
automatically.

Here is the prototype structure (minus the header lines):

«fields name, species, s1, s2, pj¶
«name» «species» «s1» «s2» «pj»¶

Note that the fields statement follows the header lines on the page. To import
data into this prototype, it is necessary to use the selection method; the whole
prototype must be selected since the header lines should appear only once. If the
cursor were simply placed in this text frame before importing, every imported
record would be preceded by the header lines.

Romar V Sentience Development Level (0-14)¶
Sector 42,A9X¶

Common SpeciesÆ First Survey Second Survey Projected Level¬
Name (c. 2200 C.E.) (c. 2500 C.E.) at 5000 C.E.¶

«fields name, species, s1, s2, pj¶
«name» «species» «s1» «s2» «pj»¶

»»»

InData Prototype Fundamentals Chapter 4:

60 InData User’s Guide

Note that the final paragraph mark is included in the selection, since it is part of
the prototype. It ensures that each record of data becomes a separate line in the
table. Even though there are only a relatively small number of records of data
in this example, InData is still of great help in ensuring consistent, accurate for-
matting.

Choosing Field Names
As we’ve noted, field names are completely arbitrary, and need not have any rela-
tionship to the field contents or the actual field names in the original application
database (or spreadsheet), although it’s generally a good idea to make them sim-
ilar. Field names may be up to 1,024 characters in length and must consist entire-
ly of letters (defined to include the underbar—aka underscore—character) and
numbers, and must begin with a letter.

The table below lists examples of legal and illegal InData field names:

LEGAL ILLEGAL

lastname last name
verylongname very-long-name
_very_long_name
Farenheit451 39steps
MiddleInitial –balance
city_state city,state

Field names are not case sensitive; any combination of upper- and lower-case let-
ters may be used to refer to the same field. Thus, a field named last may also be
referred to by the forms Last, lAst, LAST, lasT, and so on. (It’s wise, however, to
choose one particular and meaningful capitalization and stick with it.)

Although most of the prototypes in this manual will contain one, the fields state-
ment is completely optional for data files containing less than 27 fields. The first
26 fields in any data file are always automatically assigned the names a through
z. However, if the data file contains more than 26 fields, and the prototype does
not contain a fields statement, then there is no way to access the 27th and later
fields in each record (which in many cases poses no problem).

Thus, all three of the following prototypes are exactly equivalent and will produce
the same results when used to import a data file:

«fields last, first, addr, city, sta, zip¶
«first» «last»¬
«addr»¬
«city», «sta» «zip»¶

«b» «a»¬
«c»¬
«d», «e» «f»¶

Basic InData Operations InData Prototype Fundamentals

InData User’s Guide 61

«fields first, last, addr,ci,sta¶
«last» «first»¬ Looks tricky, but it’s still the same 2 fields…
«addr»¬
«ci», «sta» «f»¶

The third example illustrates two important points about prototypes. First, it
underscores the fact that the defined field names are arbitrary. It names the first
field in each record—holding the person’s last name—first, and names the second
field last. However, since it still places their respective field placeholders in the
same order on the first line of each record; the second field in each record comes
first, followed by the first field. Thus, the final output will be the same as for the
first prototype, which uses more intuitive (and sensible) field names.

Second, it illustrates the fact that you can mix automatic and user-defined field
names within the same prototype, in this case by using a fields statement that
specifies only the first five fields in each record. The prototype must use the auto-
matic name f to refer to the sixth field, since it didn’t name any field past the fifth.

Skipping One or More Fields in the Data File
Fields statements need not contain a field name for every field in the data file. For
example, the following fields statement doesn’t name the fourth field in each
record:

«fields last, first, initial, , room, phone»

All fields are always imported, however, so it is still possible to refer to the fourth
field of the data file in the rest of the prototype by using its automatic name, in
this case d:

«last», «first» «initial»¬
«phone»¬
«d» «room»¶

Data fields at the end of a record may be ignored without any special handling;
thus, the previous fields statement will assign names to the first, second, third,
fifth, and sixth fields in each record regardless of the actual number of fields in
the records in the data file.

Inserting Fields More Than Once
Imported fields may be used as many times as desired within the prototype.
There is no restriction that each be used only once. Similarly, fields need not be
used at all even though they are defined in the fields statement.

For example, if you wanted to create two address labels for each record in a data
file, you could use a prototype like this one:

InData Prototype Fundamentals Chapter 4:

62 InData User’s Guide

«fields last, first, initial, addr, city, state, zip¶
«first» «initial». «last»¬
«addr»¬
«city», «state» «zip»

«first» «initial». «last»¬
«addr»¬
«city», «state» «zip»

The character at the end of the first label is a next frame character (Shift-Enter),
which forces the second label into the next text frame. Similarly, the new frame
character at the end of the prototype will force the subsequent label created by
the next data record into the next text frame.

A similar technique could be used to create two or more slightly different labels
for each incoming data record.

Field Placement Flexibility
Fields also need not be placed into the document in the order in which they are
defined in the fields statement (and that they appear in the data file). They may
be placed in any order, regardless of their actual position in original data records.

In general, the fields statement merely defines names for the corresponding data
file fields. It does not prescribe or control how those fields are imported or placed.

Missing and Empty Fields
If some records in the data file do not contain information in every field, then the
corresponding position for that record in the final output will be empty (blank).
The rest of the prototype will be completed normally. For example, the following
formatted record has no data in its city field:

Smith, John
124 Wayside Heights Rd.
, TX 67344
111-222-3344

Methods of handling empty fields in the imported data are covered in Chapters
3 and 6.

When to Omit the Right Chevron Mark
You may have noticed that fields statements in example prototypes often omit the
final » mark. The reason for this is illustrated clearly by the following example.
The illustration shows the different document forms resulting from two proto-
types which differ only by the presence or absence of the closing chevron mark on
the fields statement.

Basic InData Operations InData Prototype Fundamentals

InData User’s Guide 63

PROTOTYPES:
«fields last,first,ext¶ «fields last,first,ext»¶
«last», «first» «ext»¶ «last», «first» «ext»¶

SAMPLE OUTPUT:
Crashaw, Richard 2213 ¶
Grenville, Fulke 2543 Crashaw, RIchard 2213
Howard, Henry 8732 ¶
Jonson, Ben 2311 Grenville, Fulke 2543
… and so on …

In the right prototype, the fields statement is terminated by the » mark. The
paragraph mark—which we’ve underlined—is a literal character in the proto-
type, exactly like the comma after the last name. Thus, it is reproduced as the
first character in every imported record, producing the extra spacing between
records in the final document.

By contrast, the fields statement in the first prototype is terminated by the para-
graph mark itself; here, the paragraph mark serves the same function as a »
mark. Thus, it is part of the fields statement and not a literal character in the pro-
totype, and accordingly, it does not appear in the formatted records in the result-
ing document.

In general, any closing chevron mark may be replaced by a paragraph mark (cre-
ated by entering a carriage return). However, if a closing chevron mark is used,
and a new paragraph is not desired, then the next portion of the prototype should
be placed on the same line with no intervening text. For example, if a fields state-
ment is closed with the » mark, then the initial line of the formatting specifica-
tions should be placed in the same paragraph with it, as in this example:

«fields first, last, title, room, ext»«last», «first» «title»¬
Ext. «ext» (Room «room»)¶

Replacing the closing » mark with a paragraph mark may often be helpful in
making prototypes clearer and easier to understand. Further examples of these
considerations will be given later in this manual.

More Examples of Formatting Prototypes
InData’s advantage over the built-in report generation capabilities of database
and spreadsheet packages is its ability to bring the publishing power of InDesign
to your data. InData may be used to format the same data in many different
ways, limited only by your imagination and available time. The prototypes to fol-
low illustrate some alternate treatments of some employee name and address
data, having the following fields:

◆ last name
◆ first name

»

»»

InData Prototype Fundamentals Chapter 4:

64 InData User’s Guide

◆ address
◆ city
◆ state
◆ zip code
◆ title
◆ department

We’ve already seen that address labels are easy to format using InData. The basic
procedure when creating a label document is to create text frames on the master
page for each label on the sheet and then to enter the prototype into the first
frame on page one of the document (don’t make the mistake of placing the pro-
totype on the master page!). Here is a sample prototype:

«fields last,first,addr,city,state,zip,title,dept¶
«title» «first» «last»¶
«addr»¶
«city», «state» «zip»

Notice the InDesign “new frame” character at the end of the prototype (created
by typing Shift-Enter). Placing it at the end of the prototype ensures that each
record will be in a separate text frame, corresponding to its own label. Set text
frame vertical alignment to Center (by selecting the frame and then using the
Text Frame Options command from the Object menu) to center the text vertically
on the label.

Form letters are also easily produced with InData. For example, the prototype
below creates an invitation for each person in a data file:

The Board of Directors¶ The Board of Directors
of the Poole Asteroid Mining Company¶ of the Poole Asteroid Mining Company

cordially invite¶ cordially invite

«g» «b» «a»¶ ➥ Mr. Richard Crashaw

to our 50th Anniversary Celebration¶ to our 50th Anniversary Celebration

Saturday, June 12, 2077¶ Saturday, June 12, 2077
2:00 to 6:00 p.m.¶ 2:00 to 6:00 p.m.

The Beachfront Hotel The Beachfront Hotel

The majority of this prototype is literal text, with the last name and first name
fields from the data file inserted in the fourth line (the second and first field per
record, respectively). Like the previous example, the prototype concludes with a
next frame mark to ensure that each invitation is placed properly on the page.

Basic InData Operations More Examples of Formatting Prototypes

InData User’s Guide 65

The same data file can also be used to create signs for office doors. Signs could be
printed on heavy card stock and then cut to fit existing holders. Here is one pos-
sible prototype, along with one of the signs it produces (both greatly reduced in
size):

➥

As you can see from this example, InData prototypes may be used with nearly
any set of InDesign features, like the shaded and rotated text frames illustrated.

Forcing Text to the Next Column,
Frame, Page and Even/Odd Page
We’ve seen several different ways to force text to start in the next column or next
text frame in this and the previous chapter:

◆ Follow it by a new column character (Enter). This will force text to the top
of the next column in multi-column text frames and into the next text frame
in single column text frames.

◆ Follow it with a new frame character (Shift-Enter), which always begins sub-
sequent text in the next text frame.

◆ If you want a break before a given paragraph, you can make the paragraph’s
Space Before setting a value larger than the depth of the text frame. For
example, to force each record on to its own address label without using a final
new frame character within the prototype, set the Space Before value for the
paragraph containing the first line of each label to some value that is longer
than an individual label (6” for example).

And there are several other break-control methods you can use with InDesign:

◆ If you want a break after a given paragraph, you can make the paragraph’s
Start Paragraph setting (in the Keep Options) one of In Next Column, In
Next Frame, On Next Page, On Next Odd Page, On Next Even Page.

More Examples of Formatting Prototypes Chapter 4:

66 InData User’s Guide

◆ InDesign also has special break characters for next column, frame, page, even
page, and odd page, and you can use the appropriate break character for your
situation in an InData prototype.

The InData Menu
We will now turn to a brief consideration of each of the items on the InData menu.

Import from File…
Import data records from an external file.

Import from Clipboard…
Import data records that are currently residing on the system clipboard.

Import from Pasteboard…
Import data records residing in a unique text story on the pasteboard.

Make Header/Footer…
Create a mark reference for use in generating automatic headers and
footers.

Update Headers/Footers…
Update any relevant headers and footers on the current story to match
the current state of edited, imported text.

Use Story as Prototype
Designate the currently selected text story as the prototype.

Name Story…
Assign a name to a text story within the document for later Apple-
Scripting.

Name Substory…
Assign a name to a subset of a named story for later use with Apple-
Scripting.

Find Story/Substory…
Locate a specified story and possibly substory within the current InDe-
sign document.

Preferences
Edit InData preferences. Contains a submenu consisting of Data…,
View…, Range…, and General…, which are used to set specific types of
preferences.

Basic InData Operations The InData Menu

InData User’s Guide 67

About…
Display an informational window describing this copy and version of the
InData plug-in.

The various InData menu items will be discussed frequently throughout this
manual.

Data Import Options
Normally, InData imports records from an external data file, but there are other
potential source locations for the raw data records. For example, data may come
from the system clipboard. You import clipboard records by simply selecting
Import from Clipboard… rather than Import from File… from the InData menu.
Any formatting information in the data—italics for example—is ignored and will
not be carried over into the formatted records. Rather, as always, each field’s for-
mat will be the same as that of its field placeholder. If there is not currently any
text on the system clipboard, then this menu item will be dimmed.

Data records may also reside in a text frame on the pasteboard. If you choose the
Import from Pasteboard… option from the InData menu, then the data records
will be assumed to be in a text frame on the pasteboard of the current spread.
This text frame must reside entirely on the pasteboard and be the only text frame
placed there (except for a text frame which has already been designated as hold-
ing the prototype). As for text imported from the clipboard, all formatting infor-
mation in the data is ignored.

Once an import option is selected and a data file is specified (if applicable), the
InData control panel appears on the screen:

Status messages
appear in this area.

Import progress is
indicated by the bar
and record number.

Selects which
records in the
data file are to
be imported.

Controls when
the screen is

updated during
importing.

Specifies format
of the incoming

data records.

Data Import Options Chapter 4:

68 InData User’s Guide

We’ll look at each of the related dialogs individually in the sections that follow.

Specifying the Data Format

The Data... button is used to bring up the Data Preferences dialog. The most
important settings in this dialog are the Basic format field and First record is
header setting.

The Basic format field is a pop-up menu listing the most common exported data
file types exported by database and spreadsheet programs. This menu includes
the following selections:

Tab-delimited
Fields are separated by tabs within a record, and records are separated
by carriage returns. Fields containing tabs or returns are entirely
enclosed in double quotation marks, and all double quotation marks are
doubled.

Comma-delimited
Fields within a record are separated by commas, and records are sepa-
rated by carriage returns. If a field contains a comma or a carriage
return, it is entirely enclosed in double quotation marks, and all double
quotation marks are doubled.

MS Word™ merge comma-delimited
The comma-delimited format exported by Microsoft Word (regular
comma-delimited with a header record that is automatically ignored).

MS Works™ tab-delimited
The tab-delimited format exported by Microsoft Works’ database/spread-
sheet application (regular tab-delimited with a header record that is
automatically ignored).

The Basic format field specifies the format of
the data. Selecting a basic format automati-
cally fills in the other fields in this dialog.

Check this box to skip the first data record.

Basic InData Operations Data Import Options

InData User’s Guide 69

Custom
User-defined data format: you must fill in any special values for the other
fields in the dialog. See Chapter 13 for details.

Select the format from the pop-up menu corresponding to the one you used when
exporting your data from its original application program. We recommend
importing files in the tab-delimited format, so select this format when export-
ing your data if your application offers it as one of its choices.

The First record is header check box should be checked if your application pro-
gram outputs a header record (usually containing the names of the fields that
were exported) in exported data files. Choosing this option instructs InData to
skip this first record in the data file. (Note that InData cannot process this record
to assign field names.)

Select the FoxBase/FoxPro-style quoting (not doubled) check box in the data
preferences dialog when using FoxBase or FoxPro data snapshot output. This
option prevents double quotes ("") within fields from being interpreted as a sin-
gle quote (").

For the vast majority of import operations, choosing one of the standard formats
is the correct thing to do. If you have exported data from your original application
program using a built-in export option, then it is very unlikely that you will need
to change any of the settings.

You may override any of the standard settings for any format by entering spe-
cific values into the series of fields on this dialog. Values are entered either by
choosing them from the pop-up menus (which attempt to list every nonprinting
value a setting might take on), or by directly typing them into the spaces pro-
vided. Numeric values of two or more digits are assumed to be ASCII codes for the
desired character.

Changing a field’s contents to a blank (or beginning with a blank) disables that
field, and informs InData that all corresponding characters should be treated as
literal data. For example, entering a blank into the Quote character field disables
the double quote character as a quote character, and InData will treat all dou-
ble quotes found as simply part of a data field.

Data Import Options Chapter 4:

70 InData User’s Guide

Importing a Range of Records

The Range… button on the InData control panel brings up the Range Prefer -
ences dialog. It may be used to specify the range of records to import from the
data file (or other data source). Normally, all records are imported. You may spec-
ify a range of records to import by entering the beginning and ending record
numbers into the frames in the second line. For example, to import only records
14 through 45, inclusively, enter 14 into the frame following the word record and
enter 45 into the frame following the word through.

Record numbering begins at 1. The keyword end may be used in place of the end-
ing record number to specify that all records from the beginning record are to be
imported. Last, all, and final may also be used as synonyms for end.

If the number entered as the final record is greater than the number of records
in the data file, no error occurs. InData will stop processing once the last record
in the data file has been imported.

If the First record is header check box in the Data Preferences dialog is checked,
the records specified here are what is to be imported after skipping the first
record. If you only need to skip the first header record in your data file, then use
the First record is header check box in the Data Preferences dialog, rather than
specifying an explicit record range of 2 through end.

Document View Options

The View… button on the InData control panel brings up the View Preferences
dialog . It may be used to control the rate at which the screen is updated. Nor-
mally, the screen is not updated until all data records have been imported and
processed (unless you’re importing pictures, in which case InDesign will spon-

Basic InData Operations Data Import Options

InData User’s Guide 71

taneously update the screen after every picture frame insertion); this behavior is
equivalent to the second radio button in this dialog, labeled Don’t show document
changes.

You may change this default screen update behavior if you like by selecting either
of the other buttons in this dialog. The third button, Show document changes
every __ records, determines how often the screen view is updated during data
importing. For example, a setting of 20 means that the screen will be updated
each time 20 records are imported. Note that frequent screen updating will slow
down the import process.

The top button, Hide document window, will cause InDesign to show absolute-
ly no window updates during the entire import operation. It is the fastest import
mode, particularly when importing pictures along with text.

The InData control panel’s Show button may be used to request an immediate
screen update at any point in the import process.

Controlling Data Importing

You begin data importing by pressing the Start button on the InData control
panel. Once data importing has begun, the Start button changes to Pause, and
the Cancel button changes to Stop. Clicking on the Pause button will temporar-
ily pause data importing and formatting, and give you an updated view of the last
record imported. (There may be a slight or lengthy pause while InDesign com-
putes the updated screen image.)

When InData is paused, the button’s name changes again to Continue; clicking
on the Continue button will resume processing.

The Stop button at the bottom of the control panel immediately aborts InData’s
operation at whatever record is being imported when you press it.

Data Import Options Chapter 4:

72 InData User’s Guide

The Show button is used to request an immediate screen update. When you press
it, InData will update the screen image regardless of the settings in the View
Preferences dialog.

Prototype Errors
When you select an import option from the InData menu, the first thing InDa-
ta does is to scan the prototype for errors. If there is an error in the structure of
your prototype, InData will inform you of this and abort the import operation. No
data records will be imported. Instead, an error message will appear in an alert
dialog, and the incorrect part of the prototype will be highlighted in your docu-
ment when you dismiss the alert.

If the structure of your prototype is correct, but an error occurs while process-
ing your data, importing will cease at that point. If you placed the prototype in
a separate text frame on the pasteboard, then you may simply go there and edit
it. Once you’ve corrected the problem, delete the imported records, and then try
the import operation again.

On the other hand, if the prototype was in the target text frame, you may end up
with only part of your data (or none at all) in the final document and your pro-
totype gone. Unless you are importing the data from clipboard, this is still no
cause for alarm, however. When it can, InData always copies the prototype to the
clipboard before importing any data. Thus, you can use the following steps to
recover from these kinds of errors:

1 Place the cursor in the position where you want the prototype to go (usually at
the beginning of the document) and then select Paste from the Edit menu. The
prototype will be pasted at the insertion point.

2 If you do not want to save the partially formatted data, then select all of it and
delete it from the document.

Alternatively, you may wish to create a new document and paste the prototype
into it in order to save both the prototype and the partially completed document.

Warning:If you are going to import data from the clipboard, then we recommend
that you always place the prototype in a different text frame from the target text
frame which will receive the data. Otherwise, if you failed to save the file before
importing data, there is no way to recover the prototype once data has been
imported.

For specific solutions to common importing problems, see Chapter 14.

Basic InData Operations Data Import Options

InData User’s Guide 73

Setting InData Preferences
All of the settings we’ve seen in the previous section can be set on a permanent
basis, either for a single document or globally for all InData operations. The InDa-
ta menu’s Preferences… option allows you to set defaults for InData.

InData preferences work the same way as InDesign’s preferences. Whenever pref-
erences are set while a document is open, the settings apply to that document
alone. However, if they are set without any open document, they apply to every
document that does not have its own specific preferences. Of course, the settings
specified as InData preferences may always be overridden for any import oper-
ation by explicitly changing the desired settings via the InData control panel.

Selecting Preferences on the InData menu produces a slide-off menu.

The Data…, View…, and Range… options bring up the same dialogs as the cor-
responding buttons on the InData control panel.

The General… option brings up the General Preferences dialog, with the follow-
ing settings.

The Default picture position field indicates where and how imported pictures
will be placed within their picture frames. It has the following options on its pop-
up menu:

Top Left
Place the picture’s upper left corner in the upper left corner of its picture
frame. (This is the default in InDesign; the same behavior results from
the Place… option on the File menu.)

Center Center the picture in the picture frame.

Center, size to fit
Size the picture to fit the picture frame exactly.

Center, size to fit, w/o distortion
Size the picture to fit the picture frame, maintaining the picture’s origi-
nal proportions (aspect ratio), and then center it.

Size Frame to Picture
Shrinks the anchored picture frame to fit its contents (once they are

Setting InData Preferences Chapter 4:

74 InData User’s Guide

imported), obeying any scaling and margin picture frame properties (see
chapter 5), and ignoring any offset picture frame properties.

Size to Fit Horizontally, then Size Frame Vertically to Picture
Sizes the picture itself in its anchored picture frame to fit horizontally
(i.e., to fill the frame in the “x” direction) once the picture is imported, sets
the picture’s y scale to match its x scale (as determined above by making
it fit horizontally), and then shrinks the anchored picture frame itself
vertically to make it fit the contained picture.

The Start automatically after source selection button specifies whether the user
needs to press the Start button on the control panel before data importing begins.
If it is checked, then importing begins automatically as soon as InData knows
where the data records are. By default, it is unchecked.

If the Keep importing after missing pictures box is checked, then InData will
continue importing data records even if it cannot find one or more picture files
and leave the corresponding picture frame(s) empty. By default, data importing
ceases immediately when a picture file can’t be located.

The Don’t automatically update headers/footers check box controls whether
headers and footers are updated automatically at the conclusion of an import
operation. By default it is unchecked.

If the I’m an expert user (suppress warnings) box is checked, then the warning
message that occurs when the imported data overflows its text thread and other
warnings are not displayed. It is unchecked by default.

The Maximum length of variables field controls the maximum number of char-
acters that you can place into a variable with InData’s put prototype statement,
in multiples of 1024 bytes (1K); by default, the length is 2K characters. InData
variables are discussed in Chapter 10.

Basic InData Operations Setting InData Preferences

InData User’s Guide 75

76 InData User’s Guide

5
Preparing Data for Importing

This chapter discusses methods of preparing data for use with InData. InData
can import data exported from virtually any Macintosh or Windows spreadsheet
or database application.

Data File Formats
InData imports the following standard text file interchange formats:

Comma-delimited fields: Field values are separated by commas within a
record, and records are separated by ASCII carriage returns. Field values con-
taining embedded commas are enclosed in double quotation marks. When export-
ing data to this format, some applications, such as FileMaker Pro, convert double
quotation marks within field values to single quotation marks, but others double
them properly.

This format is also called “comma format,” “comma text format,” “BASIC format,”
and “CSV” (for comma-separated values).

Tab-delimited fields: Field values are separated by ASCII tabs within a record,
and records are separated by ASCII carriage returns. This format is also called “tab
format,” “tabbed text format,” “text format with tabs,” and “TSV” (for tab-separat-
ed values). Double quotation marks are used to surround fields with embedded
tabs and double quotation marks (which are doubled).

InData provides a built-in variation of the tab-delimited format, which auto-
matically skips an initial header record, called Microsoft Works™ Tab-delim-
ited format.

Microsoft Word™ Merge File: This format is most associated with Microsoft
Word, but it is also used by MacWrite II, for example. It is very similar to the
comma-separated fields format, but includes an additional header record at the
beginning of the data file containing the field names; this header record is ignored
by InData and cannot be used to specify import field names.

InData User’s Guide 77

It is also possible to define and use custom record formats. This topic is discussed
in Chapter 13.

Handling Carriage Returns within Fields
When exporting in some of these interchange formats, some application packages
convert ASCII carriage returns within field values to ASCII vertical tab characters
(e.g., FileMaker Pro does this in its merge file format, and Microsoft Word con-
verts Shift-Returns to vertical tabs as well). By default, InData reconverts these
vertical tab characters to hard carriage returns—the same character entered by
pressing Shift-Return within InDesign—causing each field value to remain a sin-
gle paragraph (or remain within a larger single paragraph also containing other
text). You can override this behavior by specifying a different value in the Data
Preferences dialog (see Chapter 4).

General Exporting Procedures
The general procedure for preparing and exporting data files is outlined below.

1 With your original application program, open the file containing the data you
want to import into InDesign.

2 If necessary, sort the data (or the subset of the data) you plan to export within the
application program, using the appropriate key fields for the use you plan to
make of it within InDesign.

For example, if you are preparing a phone directory in which you want all names
to appear in alphabetical order, then sort the data by last name, then first name.

On the other hand, if your directory will be arranged by department, then sort
the data with department as the primary sort field (and possibly last name and
first name as secondary sort fields). Refer to your application program docu-
mentation for details on its sorting procedures.

3 Select the appropriate export option from the application’s menus.

The name of the export option varies; some common names are Export, Save As,
Output To and Copy To.

4 Specify what subset of the data you want to include.

In a database application, this means specifying which records and which fields
are to be included. These two activities may be done in separate steps. For exam-
ple, in FileMaker Pro, you specify which records to include before selecting the
export command Export..., and you specify which fields to include in its Specify
field order for export dialog. In a spreadsheet application, specifying the subset
of the data means specifying what row and column ranges are to be included.

Data File Formats Chapter 5:

78 InData User’s Guide

Again, depending on the application, this may need to be done before selecting
the export command.

5 Select the appropriate data file format from those supported by your application.

“Tab-separated fields” is usually the best choice (note that it may appear under a
slightly different name—check the list in the first section of this chapter).

6 Specify the name of the output file.

Be sure to choose a different name from your original application file. One con-
vention is to give the data file the name of the original file with a suffix indicat-
ing the file’s format. For example, a tab-separated fields format data file export-
ed from a database file named Employees might be called Employees.tsv. Another
common practice is to give such files the extension .TXT.

7 Begin the export operation by clicking on the appropriate button in the applica-
tion’s dialog (often Save, OK or Output).

Depending on your application, the steps above may need to be done in a differ-
ent order. For example, specifying the name of the output file might precede spec-
ifying the file format, or specifying the subset of a spreadsheet to be included (per-
haps by selecting the range you want) might need to be done before selecting the
export command. Check the manual for your application’s specific details.

Exporting Data from Database Applications:
An Example from FileMaker Pro

FileMaker Pro is one of the most popular Macintosh database programs. This sec-
tion goes through the export process for FileMaker Pro. The procedures for other
database applications are similar, although the menu names vary and the dialogs
look different.

1 Start FileMaker Pro and open the database file containing the data you want to
publish with InData and InDesign.

2 If necessary, select and sort the subset of the database records you want to
include.

This may be done either by using the Find command to select a subset of the
database, or by using the Omit and Omit Multiple... commands to exclude certain
records. Sort the records into the order in which you want them to appear in the
InDesign document, using the Sort... command.

3 Select the Export command from the File menu.

Preparing Data for Importing Exporting Data from Database Applications

InData User’s Guide 79

The Export dialog will appear. Use this dialog to specify the name and location of
the export data file you are creating. You may choose any name you wish, but be
sure to use a different name from that of your original database file.

4 Select Tab-Separated Text from the File Type pop-up menu.

We strongly recommend that you use this format when exporting from FileMak-
er Pro. If you use the Comma-Separated Text (comma-delimited) format instead,
the following fairly severe restrictions will apply:

◆ You will lose the ability to access the subvalues in repeating fields.
◆ You will lose any embedded carriage returns in data fields.
◆ Field lengths will be truncated to 256 characters.

5 Click the New button. The Export Field Order dialog will appear:

You will use this dialog to specify the fields to include in the data file and their
order within each record.

The left list frame initially lists all the fields in the database. When the dialog
is exited, all of the fields listed in the right list frame will be exported, in the order
in which they appear.

To designated a field for exporting, select it from the left list frame and then click
the Movebutton. Select each field you want to export in turn, and continue this
process until all of the fields you want are listed in the right list box.

6 We recommend that you select the Don’t format output radio button below the
field list box.

7 Click the OK button to close the dialog and begin data exporting. Exit from File-
Maker Pro.

Exporting Data from Database Applications Chapter 5:

80 InData User’s Guide

Your data file is now ready for importing into InDesign using InData.

Handling FileMaker Pro Databases with Repeating Fields
Multivalued fields—fields which can take on more than one value per database
record—require no special handling when exporting them to InData and InDe-
sign as long as the export file format is Tab-Separated Text. FileMaker Pro calls
such fields repeating fields.

InData can access the separate values in repeating fields via its subfield opera-
tion (see Chapter 7).

Exporting Data from Database Applications:
An Example from Visual FoxPro

This section describes the export process for Visual FoxPro, using the Windows
version as its example.

1 Start Visual FoxPro and then open the table from which you want to export data.
One way to do so is to issue the use command in the command window.

2 Sort the data into the desired order. Often this can be accomplished by a set order
to command referencing an existing index.

3 Select Export from the File menu. The dialog on the left will appear:

Use the To field to specify the output file’s name and location. We recommend
selecting the Delimited Text option from the Type popup menu and setting the
Field separator to {tab} and the Text delimiter to a double quotation mark.

4 Click the Options... button to access the Export Options dialog (illustrated above
on the right). Press the Fields… button in order to select the fields to be export-
ed. The Field Picker dialog will appear:

Preparing Data for Importing Exporting Data from Database Applications

InData User’s Guide 81

Move each field that you want exported to the Selected Fields list in turn. Note
that you can specify a different open database by selecting its name from the
From Table list. Click OK when all of the fields you want are in the Selected
Fields list.

5 Use the Scope..., For…and While… buttons to specify conditions which will select
the subset of the data that you want to export. In our example, we have select-
ed records from where the country is the USA.

Note that you will almost certainly need to include a join condition if you are
exporting fields from more than one table.

6 Close the subordinate dialogs and click the OK button in the Export dialog when
you are ready to export the records.

Your data file is now ready for importing into InDesign using InData. (Be sure to
turn on the FoxBase/FoxPro-style quoting (not doubled) option in your InData
data preferences.)

Note that the entire export operation could be performed from the command win-
dow with a Copy To command like this one (assuming the database is already
open):

COPY TO Cust.Txt FIELDS cust_id, title, last, first, … ;
FOR country="USA" TYPE DELIMITED WITH TAB ...

Exporting Data from Database Applications Chapter 5:

82 InData User’s Guide

Exporting Data from Spreadsheet Applications:
An Example from Excel

This section goes through the export process for Excel. The procedures for other
spreadsheet applications are similar, although the menu names vary and the
dialogs look different.

1 Start Excel and then open the spreadsheet containing the data you want to pub-
lish using InData and InDesign.

2 If you want to export only a portion of the spreadsheet, then you have two
options:

◆ You may remove all of the unwanted cells from the spreadsheet—or a copy of
it—before exporting.

◆ Or, you may select only those rows and/or columns you want from the InDa-
ta control panel, or from the prototype itself.

Extra columns are ignored by leaving those fieldnames null in the InData fields
statement (or by omitting them at the end, or by just not using them in your pro-
totype). Extra rows are ignored by specifying starting and ending records via the
InData control panel’s Range… button. The latter operation is practical only if all
the rows you want to keep are contiguous.

If you decide to remove extraneous data from the spreadsheet, do it at this point.
Also do any sorting you need at this point.

3 Select Save As… from the File menu.

4 Select the export data file name and location in the Save As dialog.

You may choose any name you wish, but be sure to use a different name from that
of your original spreadsheet file. We suggest naming the data file something like
name.tsv where name is the name of the original spreadsheet.

Preparing Data for Importing Exporting Data from Spreadsheet Applications

InData User’s Guide 83

5 Select Text (Tab delimited) from the Save as Type popup menu:

6 Click the Save button to close the dialog and begin data exporting. Exit from
Excel.

Your data file is now ready for importing into InDesign using InData.

Creating Data Files Manually
Data files for InData may also be created by hand with any word processing pro-
gram or even within InDesign (in a text frame on the pasteboard). These data
files may use either the tab-delimited or comma-delimited format type. When typ-
ing your data, separate fields by tabs, and enter a carriage return at the end of
each record. Each record thus becomes one line (or paragraph, in a InDesign
story). If a field value contains a tab or a comma, enclose the entire value in dou-
ble quotation marks. If a field value contains a double quotation mark, then
enclose the entire field in double quotation marks and double the double quota-
tion mark . For example, typing "data with ""quotes"" embedded" produces the field
value data with "quotes" embedded.

If you’re using a word processing program, be sure to save the file in Text Only
format; consult your word processing program’s manual for details. If your word
processing package has two kinds of Text Only formats (as does Microsoft Word),
choose the text format without line breaks.

It is also possible to use InDesign to maintain a simple database. The data lives
in a text story on the pasteboard, and it may be formatted with InData at any
time. You may want to create a InDesign template consisting of the data and pro-
totype. Then, any time you want to publish the data, you simply open the tem-
plate, import the data from the pasteboard with InData, and produce a new InDe-
sign document, leaving the original data and prototype unchanged for future use.
When you want to update the raw data, open the template, edit the data, and
then save the file as a template under its original name, replacing the old version.

Exporting Data from Spreadsheet Applications

84 InData User’s Guide

6
Conditional Data Importing

In this chapter, we’ll look at InData’s conditional importing facility. First, we’ll
consider some examples that commonly occur in prototypes, and then we’ll turn
to a discussion of conditional prototype statements in general.

Many times data files will contain records with some empty fields. For example,
a database of names and addresses will often allow two fields for the address, but
not all records will use both of them. When importing data like this, InData
allows you to conditionally import a field, so that the field will only be included
in the document if there is data in it.

The prototype below illustrates this feature:

«fields last, first, addr1, addr2, city, state, zip¶
«first» «last»¶
«addr1»¶
«--only import field addr2 if there is something in it¶
«if addr2 is not empty»«addr2»¶
«endif»«city», «state» «zip»¶

The shaded part of the prototype tells InData to include the data in the field
addr2 and the following paragraph mark only if that field is not empty.

This example also illustrates the use of comments within InData prototypes. The
fourth line of the prototype is a comment, which is ignored during the import
process. When a comment designator, either a pair of hyphens or a single em-
dash, appears within a prototype statement, everything after it is treated as a
comment and ignored by InData until the close of the close of the prototype state-
ment (» mark, new paragraph, new box, and so on). For example, the following
two prototype statements are treated identically by InData:

«if last is not empty»
«if last is not empty — check for a valid, non-empty last name»

As illustrated, an em dash, “—”, may also be used as a comment introduction indi-
cator.

InData User’s Guide 85

Note that double hyphens and em dashes are not treated as comment indicators
when they appear inside of quoted character strings within prototype statements,
as in this example:

«if code <> "XJ7--12A"»

if Statements
The basic form of an if statement is:

«if condition» statements «endif»

where condition is a test to be performed and statements are any prototype state-
ments—often field placeholders and literal text—which are to be included for
each data record only if the stated condition is met (true). In the first example in
this chapter, the condition was addr2 is not empty, and the statement was
«addr2»¶; the former checks whether the field addr2 is empty or not, and the lat-
ter tells InData to include the contents of the field addr2 and a paragraph mark
(carriage return). This test occurs for each imported record, and the addr2 field’s
contents and the paragraph mark are included only when that field is not empty.

It is important to note that the endif statement comes after the paragraph mark
following the addr2 placeholder; otherwise, two paragraph marks would result,
regardless of the contents of field addr2. Thus, the paragraph mark is itself con-
ditionally included in the imported text based upon the contents of the field addr2.

An if statement is not limited to selective inclusion of fields, however. For exam-
ple, an if statement may also be used to specify alternate formatting of a field
based on some condition. For example, the prototype below prints the zip field in
18 point type if the state field holds CA and in normal 10 point type otherwise:

«fields last, first, addr, addr2, city, state, zip¶
«first» «last»¶
«addr»¶
«if addr2»«addr2»¶
«endif»«city», «state» «if state is "CA"»«zip»«else»«zip»«end if»¶

The zip field’s contents will be inserted into each record in any case, but its for-
matting will depend on which particular field placeholder was selected, which in
turn depends on the contents of the state field.

The preceding prototype also illustrates a couple of other points about if state-
ments. First, as its fourth line illustrates, the is not empty keywords are option-
al in if statements testing only the presence of a single field: «if addr2» is equiv-
alent to «if addr2 is not empty».

if Statements Chapter 6:

86 InData User’s Guide

Secondly, the preceding prototype also introduces the else statement, which pre-
cedes statements to be processed if the condition is not true. The general form
of the if statement is thus:

«if condition» true-statements «else» false-statements «end if»

Both sets of statements may contain literal text, field placeholders, expressions
involving literal text and field placeholders, and additional prototype statements
(including nested if statements).

Finally, note that endif may also be written as two words: end if (as in the final line
of the prototype). Both forms are equivalent. We will use the single word form
throughout this manual.

Constructing Conditions
As we’ve seen, one way to construct a condition in an if statement is to compare
the contents of a field against some other value (including the empty string). The
comparison possibilities include:

◆ a literal value;
◆ the contents of another field;
◆ the contents of the same field in the previous record;
◆ any expression (we’ll discuss some examples of these later in this chapter).

Here are some examples of conditions:

last = “Smith” True if the last field is “Smith”.
city <> old_city True when the fields city and old_city contain different values.
dept <> prev dept True when the value in the dept field in the current record

differs from the one in the previous record.

These examples introduce two new comparison operations using the symbols =
and <>. The equals and not equals signs are examples of operators, which indi-
cate how the two items in the condition are to be compared.

InData provides a variety of operators for use in forming if statement conditions.
They are intentionally similar to operators found in many programming lan-
guages. The InData comparison operators are listed in the following table.

OPERATOR MEANING EXAMPLES

is empty, = "" Test whether a field is empty «if a is empty»
(contains no data).

is not empty, <> "" Test whether a field is not «if a is not empty»
empty (contains data). «if a»

Conditional Data Importing Constructing Conditions

InData User’s Guide 87

OPERATOR MEANING EXAMPLES

is, = Test whether the first value is «if a = b»
the same as the second value. «if a = "Smith"»

is not, <>, != Test whether the first value «if a is not prev a»
differs from the second value. «if a <> "Smith"»

< Test whether the first value is «if a < 10»
less than the second value. «if a < “M”»

<= Test whether the first value is «if a <= b»
less than or equal to second. «if 20 <= b»

> Test whether the first value is «if a > 10»
greater than the second value. «if a > b»

>= Test whether the first value is «if a >= b»
greater than or equal to second. «if a >= 100»

contains Test whether the first string «if a contains "ex"»
contains a specified substring. «if a contains b»

is in Test whether the first string «if "ex" is in a»
contained anywhere within «if b is in a»
the second string.

is not in Test whether the first string «if "z" is not in a»
is not present in the second. «if b is not in a»

Note that contains and is in perform the same test; they simply include the sub-
string and main string in the opposite order. For example, the following two tests
are equivalent:

“J” is in first
first contains “J”

Although they are included in the table, is empty and is not empty are not really
separate operators, but rather are special cases of the is and is not operators. «a
is empty» is exactly equivalent to «a=""» because is is equivalent to =, and empty
is a built-in constant equivalent to the empty (null) character string.

Comparisons are performed in the following manner. Each comparison operator
first attempts to compare the two items as numeric quantities; if it cannot do so
(because one or the other is not a well-formed number), then the two items are
compared on a character by character basis as character strings.

Comparisons of character strings are performed based on the strings’ relative
alphabetical order. Alphabetic case is taken into account only for character
strings which are otherwise equal. For example, case is not taken into account
when comparing Turtle and dove, but it is taken into account when comparing
Dove and dove. See the section in Chapter 13 entitled “How String Comparisons
are Performed” for details on InData’s comparison conventions.

Constructing Conditions Chapter 6:

88 InData User’s Guide

In comparison operations, literal character strings technically need only be
enclosed in double quotation marks if they have another meaning which might
be misinterpreted by InData. Here is an example where the literal character
string must be surrounded by double quotation marks:

«fields first, last, title¶
«if first is "last"» …

With the quotation marks, the statement compares the value in the field first
with the character string last; without the quotation marks, it would compare the
value in the field first with the value in the field last if there is a field named last,
and otherwise, it would compare it with the literal character string last.

Despite InData’s flexibility, however, it is good practice to get into the habit of
quoting literal character strings in prototype statements. In this way, any future
modifications to the data file structure, or to InData, will not break your existing
templates.

Either two sets of straight quotation marks or opening and closing quotation
marks may be used to delimit character strings, as in these examples:

«if a = "something"»
«if a = “something”»
«if a = "She said “Hi there!” to him."»
«if a = “She said "Hi there!" to him.”»

The final two examples illustrate the method for including quotation marks with-
in quoted character strings.

The two types of quotation marks may not be intermixed as string delimiters,
however. Thus, the following prototype statement is illegal:

«if a = "Oooopps! Do not do this”» Incorrect use of quotes

Some Example Conditional Prototype Statements
The prototype below contains examples of many of these operators:

«fields last, first, acctnum, balance, last_dep, aux_acct¶
«last», «first»¶
Primary Account: «acctnum»¶
«if aux_acct»Aux. Account: «aux_acct»¶
«endif»«if last_dep > 0»Last Deposit: $«last_dep»¶
«endif»«if balance < 0»*** Overdrawn ***¶
«else if balance = 0»Zero Balance¶
«else»Balance: $«balance»¶
«endif¶
«if acctnum contains “999”»Gold Circle Account¶
«endif»¶

Conditional Data Importing Constructing Conditions

InData User’s Guide 89

The first if statement, in line 4, merely tests whether the aux_acct field is empty
or not; if it isn’t, then its contents are inserted into the formatted record after a
prefix. This if statement’s corresponding endif appears on line 5 so that the para-
graph mark following the aux_acct field is also conditionally inserted.

Similarly, the literal text Last Deposit: $, the contents of the last_dep field, and a
carriage return are all included only if the value in the last_dep field is greater
than zero, and the final line of a record will be Gold Circle Account whenever the
string 999 appears anywhere within the acctnum field.

Here are some sample typeset records:

Smith, John
Primary Account: 123-87-2
Last Deposit: $100
Balance: $256.92

Smith, Kevin
Primary Account: 142-22-9
*** Overdrawn ***

Smith, Larry
Primary Account: 999-23-7
Aux. Account: 187-22-9
Last Deposit: $2102.87
Balance: $15934.85
Gold Circle Account

if…else Chains
The preceding prototype also contained a more complicated example of an if
statement than we’ve seen so far:

… «if balance < 0»*** Overdrawn ***¶
«else if balance = 0»Zero Balance¶
«else»Balance: $«balance»¶
«endif¶
…

This if statement uses an else if statement as its second clause rather than just a
simple else, forming a chain of three choices depending on the value in the bal-
ance field. The initial if tests whether the value in the balance field is less than
zero. If so, the string *** Overdrawn *** is included in the record. Otherwise, it next
tests whether it is equal to zero. If so, the string Zero Balance is included; it not,
the final else clause is taken, and its accompanying string (Balance: $) and the
value in the balance field are included.

If—else if—else—endif chains of any length such as this one may be used to con-
struct prototype statements where different actions take place depending on
which of several possible values a field (or expression) has; this type of program-

Constructing Conditions Chapter 6:

90 InData User’s Guide

ming statement is known as a case construction. One use of it is to include the
first non-empty field in a series of fields. For example, the following prototype will
include the first non-empty field (if any) among the first five in each formatted
record:

«if a»«a»«else if b»«b»«else if c»«c»«else if d»«d»«else if e»«e»«endif»

As these two examples have illustrated, only one final endif statement is neces-
sary for the entire if—else if chain.

A more complicated example of a case conditional structure is found in the Mail
Merge document in the InData Samples/Mail Merge sub-folder. In this case, an if—
else if chain is used to treat incoming data records very differently based upon the
value found in some particular field. Here is the heart of the prototype (we’ve
highlighted the conditional statements):

«if key=1» I am pleased to inform you that your work has been judged outstanding by
all concerned. Congratulations on a job well done.«else if key=2» I am pleased to inform
you that your work has been judged above average. All of us at Poole thank you for your
efforts.«else if key=3» I regret to inform you that your work at the present time does not
fully meet the level required for the position you hold.«else» Your work at this time has
been found to be satisfactory.«endif»

At the present time, you will continue in your position as «itemb».«if key=1» However,
as a result of your superior performance, you will be promoted one grade within that posi-
tion, with the associated increase in salary in addition to the company-wide 1.5% cost of
living increase.«else if key=2» In recognition of your performance, you will receive a 3%
salary increase in addition to the company-wide cost of living increase of 1.5%.«else»
This year, you will receive a salary increase of 1.5%, corresponding to the company-wide
cost of living adjustment.«endif»

This prototype is part of a longer one which produces evaluation form letters for
employees of the Poole Corporation. Based on the value in the field named key,
radically different letters result. Values of 1 denote employees who are receiving
the most favorable evaluation, values of 2 indicate a better than average perfor-
mance review, values of 3 indicate a substandard evaluation, and all other values
are interpreted as satisfactory. In the second paragraph of the prototype, only the
key values 1 and 2 are treated in a special way.

The greeting line of each letter also uses a conditional statement to address recip-
ients with key field values of 1 by their first name (probably a faux pas):

Dear «if key<>1»«title» «last»:«else»«first»,«endif»¶

Note that in this case the final paragraph mark is not conditionally imported,
since we want a new paragraph to begin after the greeting in either case.

Conditional Data Importing Constructing Conditions

InData User’s Guide 91

Alternate Forms of the if Statement
There are other, shorter versions of the if statement keywords:

COMPONENT ALTERNATE FORMS

if [

else |
endif], fi, end if

Thus, all of the following if statements are equivalent if last is a field name:

«if last is not empty»«last»«else»«first»«endif»
«[last <> “”»«last»«|»«first»«]»
«[last»«last»«|»«first»«]»

In addition, the keyword then may appear before the closing right chevron mark
in the if statement if desired:

«if last is empty then»«first»«endif»

The then keyword performs no function, but some people feel that it makes if
statements more readable. (There is no abbreviation for then since it’s only pre-
sent for readability.)

Forming Compound Conditions
More complex conditions—boolean expressions—and if statements are possible
than those we have considered so far. InData provides two logical connectives and
a negation operator for constructing compound conditions:

and Joins two conditions into a compound (boolean) expression that is true
only if both component conditions are true;

or Joins two conditions into a compound (boolean) expression that is true if
either or both component conditions are true.

not Inverts the value of the following logical expression.

For example, the following if statement will place the contents of the balance field
into the formatted data only when its value is greater than zero and less than
or equal to 10,000:

«if balance > 0 and balance <= 10000»«balance»«endif¶

The not operator reverses the logical sense of the expression that it modifies. For
example, the following if statement inserts the contents of the fzip field when the
contents of the country field is something other than USA or Canada and when the
zip field is empty:

Constructing Conditions Chapter 6:

92 InData User’s Guide

«[not (country="USA" or country="Canada") and zip=""»«fzip»«]»

Use Parentheses for Grouping
As was illustrated in the preceding example, in compound conditions involving
more than two conditions, parentheses should be used to indicate the order of
evaluation. For example, the following if statement will include the acctnum and
balance fields in the formatted data (separated by a colon and a space) if the value
in field balance is less than zero and the value in field closed is zero or if the value
in balance is greater than zero and the value in closed is one:

«if (balance < 0 and closed = 0) or (balance > 0 and closed = 1)» «acctnum»: «bal-
ance»«endif¶

You will get different results when you evaluate the expression grouped in this
way than you would with other ways of grouping it. Always use parentheses to
avoid ambiguity in complex conditions, particularly since InData groups things
in non-standardly, in many cases.

Arithmetic Operators
InData prototypes also support the following arithmetic operators within proto-
type expressions:

+ Addition
- Subtraction and negation: for example, if the current contents of field a

is 5, then a+3 is 8 and -a is -5.
* Multiplication
/ Division
mod Modulus (remainder after division): for example, 23 mod 5 is 3.

Care needs to be taken with both the / and mod operators to avoid division by zero
which will produce a fatal error.

Nested if Statements
Nested if constructions are also possible in InData prototypes. Consider this
example taken from the detective directory prototype found in the InData Sam-
ples folder:

«if app<>empty»Appointed: «app». «if other» Other positions held:
«other»«endif»¶
«endif¶

This construction differs from the if—else if—endif form we looked at earlier,
where the first if statement in the chain whose condition is true is the one that
determines how the record gets formatted. In this case, the second, nested if state-
ment is entirely dependent on the first one; if app is empty, the value in other will
never be tested, and other will never be inserted into the formatted records. That
is why there are two endif statements: one to close each if statement. The para-

Conditional Data Importing Constructing Conditions

InData User’s Guide 93

graph mark comes between the two of them, making it conditional upon the outer
if statement—and hence on the value in app—and independent of the value in
other.

Comparing with the Previous or Next Record
InData allows you to use the if statement to compare the contents of any field in
the current record with any data from the previous or next data record. The pre-
vious keyword—which may be abbreviated as prev—preceding a field name indi-
cates that the data is to be taken from the preceding record. Similarly, the next
keyword indicates that the data is to be taken from the folowing record in the
data stream.

For example, the following prototype prints a header record each time the dept
field’s value changes in a data file:

«if dept <> prev dept»«dept»¶
«endif»«last», «first» «ext»¶

The following prototype places a rule and some additional space after the current
record whenever the value in the group_code field is about to change in the next
record:

«if group_code <> next group_code¶
«product_code» $«price»¶

«else¶
«product_code» $«price»¶

«endif¶

For the first imported record, all fields in the previous record are empty. Thus, the
conditions prev dept is empty and dept is not prev dept (assuming dept is always
non-empty) will be true when processing the first record with the preceding pro-
totype.

Similarly, at the end of the data, all fields in the next record are empty. Thus, the
conditions next dept is empty and dept is not next dept(under the same assumption
as above) will be true for the final record.

Avoiding Unwanted Blank Lines and Empty Text Boxes
We’ve already considered methods for avoiding unwanted blank lines within the
formatted records: making the paragraph mark following the conditionally
imported data part of the condition rather than literal text, as in these examples:

«if a»«a»¶ «if a»¶
«endif»«if b»«b»¶ «a»«endif»«if b»¶
«endif»«if c»«c»¶ «b»«endif»«if c»¶

Constructing Conditions Chapter 6:

94 InData User’s Guide

«endif¶ «c»«endif¶

In the left example, all three fields are conditionally imported, and each one that
is imported is placed into its own paragraph which terminates after the data is
imported.

The right example is somewhat different. In this case, all three fields are again
conditionally imported and placed within their own paragraph. However, each
preceding paragraph is terminated when a non-empty field is found. For exam-
ple, if field a has data in it, the prototype will first output a paragraph mark, clos-
ing the preceding paragraph, and then the data in field a.

Thus, in the first approach, each field is responsible for terminating its own para-
graph. In contrast, in the second case, each field is responsible for closing the pre-
vious paragraph before beginning its own. Which approach to use depends on the
effects you want to achieve in your final document.

Suppose you wanted a single empty paragraph between imported records. Con-
sider these two prototypes:

«if a»«a»¶ «if a»«a»¶
«endif»«if b»«b»¶ «endif»«if b»«b»¶
«endif»«if c»«c»¶ «endif»«if c»«c»¶
«endif»¶ «endif»«if a<>"" and b<>"" and c<>""»¶

«endif¶

The prototype on the left will always place a new paragraph into the document
after each data record is imported, via the final paragraph mark following the
endif. This means that all non-empty data records will be separated by blank
paragraphs, and an entirely empty data record will also produce an (additional)
blank line.

In contrast, the prototype on the right explicitly handles the case of an empty
record, placing a blank paragraph only when no field has been imported for that
record. In this case, consecutive empty records will not produce multiple empty
paragraphs.

Next box and next column characters can also be imported conditionally. For
example, compare these two prototypes:

«name»¶ «name»¶
«if a2»«a2»¶ «if a2»«a2»¶
«endif»«if a3»«a3»¶ «endif»«if a3»«a3»¶
«endif»«ci», «st» «zp» «endif»«ci», «st» «zp»«if next name<>""»

«endif¶

In the left prototype, every record ends with a new box character. This will result
in an empty box after the final imported record. In the right example, the next
box character is placed only when the next record’s name field contains data, sup-

Conditional Data Importing Comparing with the Previous or Next Record

InData User’s Guide 95

pressing the unnecessary new box character (and a possible empty last page)
after the final imported record.

Finally, here is an even more complicated prototype which handles the case of
possible blank records within the incoming data:

«if name is empty»«next»«endif¶
«name»¶
«if a2»«a2»¶
«endif»«if a3»«a3»¶
«endif»«ci», «st» «zp»«if next name<>""»
«endif¶

This prototype assumes that an empty name field indicates a blank or invalid
record that ought to be skipped. The next prototype statement—note that it is
enclosed in chevron marks—tells InData to go on to the next data record, begin-
ning processing at the start of the prototype. Thus, the next box character will be
placed into the document only when a valid record is followed by another valid
record. Be careful not to confuse the next statement with the next field modifier
or the next repeat statement (to be discussed later in this chapter).

Doing Something Every n th Record
Conditional statements may also be used to perform some operation to or after
every n th imported record. For example, the following prototype creates a sim-
ple features chart, shading every other line:

«if recordnumber(true) mod 2 = 1¶
«a» «[b="x"»•«]»«[b="n"»n/a«]»
«[c="x"»•«]»«[c="q"»?«]» «[d="x"»•«]»«[d="n"»n/a«]»¶
«else»«a» «[b="x"»•«]»«[b="n"»n/a«]»
«[c="x"»•«]»«[c="q"»?«]» «[d="x"»•«]»«[d="n"»n/a«]»¶
«endif¶

The basic importing statements are repeated twice within the prototype: once
in a paragraph with a grey rule behind it and again in an unruled paragraph. The
first field in each record is imported as is. The remaining three records are trans-
lated into symbols based on their contents.

Which section of the prototype is used to import a given data record is controlled
by the «if recordnumber(true) mod 2 = 1» statement, where mod is the modulus
operator (remainder after division) and the recordnumber(true) function returns
the position within the import stream of the current record. Thus, the condition
is true for odd numbered records and false for even numbered records.

Here is the resulting table, along with its preceding header line:

»
»»

»
»»

Comparing with the Previous or Next Record Chapter 6:

96 InData User’s Guide

SPECIES EXT. SKULL TELEPATHS WARRIORS

Centauri • •
Human • •
Mimbari • • •
Narn •
Vorlon n/a ? •

If you wanted to shade every fifth line, you would use the statement:

«if recordnumber(true) mod 5 = 1»

whose condition would be true for the first, sixth and eleventh records and so on.
If you wanted to shade every fifth line starting with line five, then the condition
to use is

«if recordnumber(true) mod 5 = 0»

If you wanted to shade every third line starting with line two, then the condition
to use is:

«if recordnumber(true) mod 3 = 2»

If you wanted to shade every third line skipping the first eight lines, then the con-
dition to use is:

«if recordnumber(true) mod 3 = 0 and recordnumber(true) > 8»

Finally, if you wanted to shade line five and every third line thereafter, then the
condition to use is:

«if (recordnumber(true) Ž 5 and ((recordnumber(true) - 5) mod 3 = 0)»

Adding extra space every nth line (or performing some other action) is handled in
a similar manner, as in this example which places a blank line after every twen-
tieth line:

«partnum» «descr» $«price».95¶
«if recordnumber(true) mod 20 = 0»¶
«endif¶

Methods for doing something every nth imported record when you are condition-
ally importing entire records are discussed in Chapter 10.

»»

Conditional Data Importing Doing Something Every Nth Record

InData User’s Guide 97

Finally, let’s examine another version of the features table:

SPECIES EXT. SKULL TELEPATHS WARRIORS

Centauri | | ■ | ■

Human | | ■ | ■

Mimbari | ■ | ■ | ■

Narn | | | ■

Vorlon | N/A | |
■

Here is the prototype that created it:

SPECIES EXT. SKULL TELEPATHS WARRIORS

..«a» «if next a»|«else»|«]» «[b="x"»■«]» «if next

a»|«else»|«]» «[c="x"»■«]»«[c="q"» «]» «if next

a»|«else»|«]» «[d="x"»■«]»«[d="n"»N/A«]»¶

It is similar to the one used before, although the symbols have changed. Notice
that the vertical lines in the formatted table are created using vertical bar char-
acters which have been vertically scaled and baseline shifted. Both the vertical
rules and the data are positioned using center tab stops, and each paragraph has
a horizontal rule underneath it. (We’ve increased the leading here to make the
prototype easier to read.)

Here is this part of the prototype that created the vertical rules in a more read-
able form:

«if next a»|«else»|«]»

The first bar is 10 point Helvetica type, vertically scaled by 270% and having a
baseline shift setting of -2.5pt. This bar will be used in all but the final line of the
table, where a somewhat shorter bar is needed to avoid crossing the final hori-
zontal rule (220% vertical scale and a baseline shift of +1.5pt).

This technique requires a fair amount of trial and error to get things to look right,
but the final result can be quite pleasing. You can use larger or smaller point sizes
of Helvetica type to produce thicker or thinner vertical lines. In some cases, reduc-
ing the leading in the relevant paragraphs will also help in positioning the ver-
tical bar characters to create vertical rules.

The Features document in the Samples folder uses some of the techniques we’ve
discussed in this subsection for a significantly larger sample features chart. We
recommend examining it if you plan to use InData in a similar way.

»

»»

»»»

Doing Something Every Nth Record Chapter 6:

98 InData User’s Guide

Constructing and Using Loops within Prototypes
Suppose you wanted to make ten address labels for each record within a data file.
You could repeat the prototype ten times, but loops provide another, easier way
to perform this task.

The following prototype statements will create ten address labels for each record:

«repeat 10¶
«first» «last»¶
«address»¶
«city», «state» «zip»
«end repeat¶

The general form of a repeat loop is:

«repeat expression» loop body statements «end repeat»

When an integer expression is used as repeat’s argument, it may include field val-
ues, as in these examples:

«repeat b»… Field b’s contents control # of times loop repeats.
«repeat b-2»… Repeat loop b-2 times.
«repeat b+c»… Add contents of fields b and c and loop that many times.

For example, the following prototype repeats a given address label count times,
where the paragraph consisting of «name» has a space-before setting of 15” to
force jumping to the next label frame:

«repeat count¶
«name»¶ Special space-before setting on this paragraph.
«address»¶
«city», «state» «zip»¶
«end repeat¶

This is an example of a loop that is (potentially) repeated a different number of
times for each imported record.

Like if statements, repeat loops may be nested within prototypes. Each loop will
require its own end repeat statement.

Other Forms of the repeat Statement
Here are the various formats that a repeat statement can take:

«repeat integer-expression» loop body statements «end repeat»
«repeat for integer-expression times» loop body statements «end repeat»

Conditional Data Importing Constructing and Using Loops within Prototypes

InData User’s Guide 99

Loops using this form repeat the prototype statements in the loop body the spec-
ified number of times. The second form is a more verbose equivalent of the first
one.

«repeat until condition» loop body statements «end repeat»
«repeat while condition» loop body statements «end repeat»

These forms of the repeat statement continue the loop until some logical condition
is met. The repeat until form repeats the loop until the specified condition becomes
true—in other words, as long as it remains false. In contrast, the repeat while form
repeats the loop as long as the specified condition remains true—in other words,
until it becomes false.

Here are examples of these types of repeat loops:

«repeat while dept="R&D"¶ «repeat until balanceŽ0¶
«last», «first» («degree»)¶ «acctnum» is overdrawn!¶
Ext. «extension»¶ Balance = $«balance»¶
«read»«end repeat¶ «read»«end repeat¶

The left loop processes records until the dept field holds something other than
R&D; each subsequent record is retrieved by the read statement (discussed in
detail in Chapter 10). The loop on the right processes records until the balance
field ceases to hold a negative value (again using the read statement to retrieve
records).

Note that if the initial condition is not met for these types of loops, then the loop
is not processed even once. For example, if the dept field holds Admin when the
loop on the left is encountered, then the loop will be skipped, although it may be
encountered again when some later record is processed.

The following loop forms function like loops in high-level programming lan-
guages:

«repeat with variable = integer-expression1 to integer-expression2» …
«repeat with variable = integer-expression1 down to integer-expression2» …

These loops initially set the specified global InData variable to the result of inte-
ger-expression1, and increment or decrement it by one each time through the loop.
The loop terminates when the variable passes the value in integer-expression2
(exceeds it or falls below it).

For example, the left loop will run through five iterations, setting the global vari-
able ind to 1, 2, 3, 4 and 5. The right loop will run through three iterations, setting
the variable ind to 10, 9 and 8:

«repeat with ind=1 to 5¶ «repeat with ind=10 down to 8¶

Constructing and Using Loops within Prototypes Chapter 6:

100 InData User’s Guide

Three important points need to be kept in mind when using these types of loops:

◆ The variable must be an InData variable and must not be a field name.

◆ The integer expressions in the repeat statement are evaluated only once, at
the start of the loop. Consider this statement:

«repeat with ind=count1 to count2+1»

If count1 and count2 are variables, then whatever values they have when the
repeat statement is executed are the ones that will be used to define the loop,
regardless of how the variables’ contents may change during the course of the
loop.

◆ For ascending loops, the initial value, in integer-expression1, must be less
than the value in integer-expression2, or the loop will be skipped. Similarly,
for descending (down to) loops, integer-expression1 must be greater than inte-
ger-expression2. When the two values are equal, then the loop is executed
exactly once.

The specified variable retains the value it had during the last loop iteration after
the loop terminates. If the loop is skipped, it retains its initial value (integer-
expression1).

«repeat forever»
«repeat»

Both of these forms do what repeat forever implies, and you will have to use an exit
repeat statement to break out of the loop (described in the next subsection). How-
ever, we recommend you use a repeat n times form instead, using a very large
value for n, as InData will never relinquish control back to InDesign if you hap-
pen to have a bug in your prototype statements.

Leaving a Loop Early
The «exit repeat» statement allows you to break out of a repeat loop early. For
example, if you don’t know ahead of time how many times a repeat loop should
execute, you could use something like:

«repeat 1000000¶
prototype statements
«if balance > 100000»«exit repeat»«endif¶
prototype statements, probably including read
«end repeat»

When the value in the balance field is greater than 100,000, then the loop will
terminate.

Conditional Data Importing Constructing and Using Loops within Prototypes

InData User’s Guide 101

Ending a Loop Iteration Early
The «next repeat» statement is used to skip the rest of the current repeat loop’s
body, going on to the next iteration. For example:

«repeat 1000000¶
«if degree<>"PhD"»«next repeat»«endif¶
Dr. «first» «last»¶
additional prototype statements
«if next dept="Admin"»«exit repeat»«endif¶
«read»«end repeat¶

Note that a next repeat statement encountered outside of a repeat loop is treated
as a next statement (discussed in Chapter 10), and an exit repeat statement
encountered outside of a repeat loop is treated as an exit statement (discussed
earlier in this chapter).

Using Picture Frames in a Loop
You can use anchored picture frames inside repeat loops. The only restriction is
that any set statement referencing a given picture box (e.g., «set the filename of
picture n») must be at the same loop level as the anchored picture frame. (The
“same loop level” includes being outside any repeat loops altogether, as in pre-
vious versions.)

There are no restrictions on the depth of loop nesting nor the number of anchored
boxes inside each loop.

Constructing and Using Loops within Prototypes

102 InData User’s Guide

7
Manipulating Incoming Data

This chapter discusses ways of manipulating data as it is imported: extracting
parts of it, transforming it, converting it, and so on. It also covers general char-
acter string manipulation within InData

Extracting Parts of Fields and Expressions
InData offers several methods of extracting part of the data in a field (or any
string). The InData character operator may be used to extract substrings of field
values. It has the following form:

character n [to m] of expression

where n and m are expressions for the starting and ending indices—offsets—of
the characters to extract from the value in the specified expression, often just a
field name. Character may be abbreviated as simply char, and the to m part of the
operator is optional if you only want to extract a single character. Character
indices start at 1 and go up to the length of the string; any index out of these
bounds is quietly normalized to the nearest bound—e.g., 0 or -5 becomes 1, and
index 10 of a 4-character string becomes 4. If m is less than n, then the result-
ing string is always empty.

For example, the following expression extracts the first character of the last field:

char 1 of last

The following expression extracts the third through the last characters from the
partnumber field:

character 3 to length(partnumber) of partnumber

In a more complicated example, the following if statement compares the first
character of the current and previous values of the last field:

«if char 1 of last <> char 1 of prev last»

InData User’s Guide 103

Here are some more examples (assume that the field title holds The Narnian Chron-
icles):

EXPRESSION RESULTING STRING

char 1 to 4 of title The
char 5 to 10 of title Narnia
character 1 of title T
char 2 to 2 of title h
char 2 to 1 of title empty string
character 100 of title empty string
character 1 to length(title) of title The Narnian Chronicles

The following prototype uses char to reformat a phone number:

«first» «last» «char 1 to 3 of phone» «char 4 to 6 of phone»•«char 7
to 10 of phone»¶

The phone field holds a 10-digit phone number without any formatting. The for-
matted records look like this:

James Kirk 510 555•1212

The following prototype reformats a price based on its number of digits:

«item» «if length(price) <= 2»«price»¢«else if length(price)>= 3»$ «char 1 of
price».«char 2 to 3 of price»«else»$«char 1 to 2 of price».«char 3 to 4 of price»«endif»¶

This prototype appends a cents sign if the data in the price field has only 1 or 2
digits. If it has 3 or 4 digits, the prototype puts a dollar sign in front of the first
character, a period before the final two characters, and formats the final two char-
acters in smaller, underlined, raised type.

Here are some sample formatted records:

Ink $12.35

Pens $1.23

Rubber Eraser 59¢
Parchment Ream $05.00

The prototype aligns all the differently formatted prices by using a right tab.

As the final example indicates, the previous prototype works only for prices of
four or fewer digits. Here is an only slightly more complex version that works for
any price:

«item» «if length(price) <= 2»«price»¢«else»$«char 1 to length(price)–2
of price».«char length(price)-1 to length(price) of price»«endif»¶

»

»

Extracting Parts of Fields and Expressions Chapter 7:

104 InData User’s Guide

This prototype formats two digit prices with a cents sign following them. For all
other prices, it outputs a dollar sign, followed by all but the last two digits of the
price field, followed by a decimal point (period), followed by the final two digits,
set in smaller, raised, underlined type. Here is how it formats the final price:

Parchment Ream $105.00

Let’s consider a more complex prototype using the character statement. It formats
a car parts price list. This document is included in the Samples folder as Car Parts:

«fields partno, note1, note2, list, discount¶
«if char 1 of partno = "*"¶

«char 2 to 500 of partno»¶
«else¶
«char 1 to 3 of partno»-«char 4 to 20 of partno» «note1» «note2»
«list» «discount»¶
«endif¶

The prototype uses char to format the part number and also to recognize and for-
mat the header records—distinguished by an initial asterisk—whenever they
appear in the input.

Here are some sample formatted records, along with their fixed column heading
line:

Part Note Note List Discount
Number 1 2 Price Price

Transmission
400-102000 EF 3 74.50 37.25
400-102001 A 9 86.50 43.25
400-102002 60.00 30.00
400-102003 B 1 34.50 17.25
400-102008 KEB 9 30.00 15.00
400-102009 L 1 63.50 31.75
400-102010 JK 74.00 37.00
400-102011 FCJ 22.00 11.00
400-102012 G 6 41.50 20.75

Alternator
400-102013 1 25.50 12.75
400-102014 D 4 108.50 54.25
400-102015 E 4 89.00 44.50
400-102016 A 93.00 46.50
400-102017 A 1 23.50 11.75

»
»»

Manipulating Incoming Data Extracting Parts of Fields and Expressions

InData User’s Guide 105

Finding the Length of a Character String
The length function gives the total length (number of characters) of any field or
expression. It has two equivalent forms:

the length of expression
length(expression)

Which one to use depends only on your personal preference.

As the previous prototype indicates, the arguments to character specifying the
starting and ending character indices need not be literal numbers, but can be any
expression that evaluates to a number, including ones involving arithmetic oper-
ations.

As we noted in the previous chapter, InData supports the following arithmetic
operations:

+ addition
– subtraction
* multiplication
/ division (with truncation)
mod modulus (remainder after division)

These operations may be used for whole numbers (integers) only; InData does not
support arithmetic involving non-integer numbers such as prices with fractional
components. It does support comparisons involving non-integers, however.

Here is a more complex example using length. The following prototype formats
each incoming record in one of two ways depending on the combined lengths of
the addr and city fields:

«if length(addr)+length(city) < 25¶
«last», «first». «addr», «city» «phone»¶

«else
«last», «first» «phone»¶

«addr», «city»¶

«endif¶

Here are some examples of the formatted records:

Jones, Tom. 12 Cherry Lane, London 223-4433

Smith, Phyllis 243-5544
45638 Westminster Palace Drive, Morgantown

Wong, Terrance. 954 Land St., Dover 223-5544

»

»

Extracting Parts of Fields and Expressions Chapter 7:

106 InData User’s Guide

Extracting Substrings
The offset function takes two arguments: a string to search for (the pattern) and
a string expression in which to look for it:

offset(pattern, expression)

Offset returns an integer character position for where the first occurrence of pat-
tern begins in the specified expression, or zero if pattern is not found. Remember
that character position numbering begin at 1.

For example, the following expression would evaluate to 5 if the field last held the
value Johnson:

offset("son", last)

Offset is often used in conjunction with char to perform substring extractions
whose starting and ending points are not known in advance. For example, the fol-
lowing prototype expression will insert all characters following the first hyphen
in the acct field into the formatted data:

«char offset("–", acct)+1 to length(acct) of acct»

If there is no hyphen in the acct field, offset will return zero and the char opera-
tor will begin extracting at the first character (0+1), which is just what we want.

String Concatenation
InData supports two string concatenation operators:

& Concatenate two character strings.
&& Concatenate two strings, adding an intervening space.

You can use these operators with literal character strings, fields, and general
character expressions. Here are some examples (assume that the field last holds
Smith, and first holds Karen):

EXAMPLE RESULT
first & last KarenSmith
first && last Karen Smith
first & " Jones" Karen Jones
first && char 1 of last & ". Jones" Karen S. Jones

Of course, within an actual prototype, these expressions would need to be
enclosed in chevron marks. We’ll see examples of these operators in action in later
chapters of this manual.

Manipulating Incoming Data Extracting Parts of Fields and Expressions

InData User’s Guide 107

Including Literal Chevron Marks in a Prototype
The global named constants guillemetleft and guillemetright may be used to place
literal « and » marks into formatted records, as in this example:

«fields homme, citation¶
«homme» a dit «guillemetleft»«citation» …«guillemetright»

The typeset records appear as follows:

John F. Kennedy a dit «Ich bin ein Berliner …»
Napoleon a dit «Able was I ere I saw Elba …»
Josephine Baker a dit «J’ai deux amours …»

Extracting Words and Lines from Expressions
The word operator may be used to extract words from fields and general strings.
Its format is very similar to character’s:

word n [to m] of expression

where n is the index of the first word you want (or an expression evaluating to
a whole number), and m is the index of the final word you want (the to m part
is optional if you only want to extract one word). Word indices begin at 1. With-
in the expression, words are normally separated by spaces.

Here are some examples (assume that the field title holds Star Trek: The Next Gen-
eration):

EXPRESSION RESULTING STRING
word 2 of title Trek:
word 3 to 4 of title The Next
word 8 of title empty string
word 4 to 1000 of title Next Generation

As the final example illustrates, including a very large number as the final word
to be extracted causes InData to select all remaining words. You can also use the
the number of words in expression statement:

word 4 to the number of words in title of title

The word operator may be used to translate the numerical code fields common-
ly found in relational databases to descriptive strings. Here is an example:

raw data: 2 10 50
3 1 150
1 5 29

Extracting Parts of Fields and Expressions Chapter 7:

108 InData User’s Guide

«fields prod_id, quantity, price¶
«--the put statement defines a variable: see chapter 10¶
«put "Chess Backgammon Checkers" into games¶
«word prod_id of games» Sets:=> $«price * quantity».00¶

output: Backgammon Sets: $100.00
Checkers Sets: $150.00
Chess Sets: $145.00

Within character string expressions, words are normally delimited by spaces,
tabs, line feeds, carriage returns, and so on. Multiple delimiters in a row do not
define additional words, but rather are carried along with the preceding word
when multiple words are extracted:

EXPRESSION RESULT
«a» The big bad wolf.
«word 2 to 3 of a» big bad

You can change the word delimiters using the set worddelimiters statement. For
example, this prototype statement sets the word delimiter set to a comma and
a semicolon:

EXPRESSION RESULT

«a» yes,no;maybe more words
«word 1 to 2 of a» yes,no;maybe more
«set worddelimiters to ",;"»
«word 1 to 2 of a» yes,no

Note that if you change the word delimiters in the middle of your prototype after
having relied on their default values, you will need to set them back to the
defaults afterward (e.g. at the end of the prototype) so that they will be set prop-
erly the next time through the prototype.

The set wordcharacters statement provides another way of customizing the word
functionality. This statement specifies the characters that are considered part
of words.

Extracting Lines
The line operator similarly extracts lines from within an expression (where lines
are separated by ASCIIcarriage return characters). It has this general format:

line n [to m] of expression

Here are some examples (assume that the field song holds the four lines of the
song, “Row, Row, Row Your Boat”—we hope you know this one):

Manipulating Incoming Data Extracting Words and Lines from Expressions

InData User’s Guide 109

EXAMPLE RESULT

line 2 of song Gently down the stream,
line 4 to 100 of song Life is but a dream.

You can also use the the number of lines in expression statement to determine the
total number of lines in an expression:

line 2 to the number of lines in song of song

Extracting Arbitrary Items
The item operator may be used to extract arbitrary items from fields and general
strings. Its format is very similar to word’s:

item n [to m] of expression

where n is the index of the first item you want (or an expression evaluating to a
whole number), and m is the index of the final item you want (the to m part is
optional if you only want to extract one item). Item indices begin at 1. Within the
expression, items are normally separated by commas, although you can specify a
different (single) delimiter with the set itemdelimiter statement.

Here are some examples:

EXAMPLE RESULT
«a» He was born, he assumed, on 5/2/97.
«item 1 of a» He was born
«item 2 to 3 of a» he assumed, on 5/2/97.
«set itemdelimiter to "/"»
«item 1 of a» He was born, he assumed, on 5
«item 2 to 3 of a» 2/97.

Note that consecutive items are separated by the item delimiter when they are
output.

Determining the Number of Chunks
The following prototype statements may be used to determine the number of
characters, words, lines, or items within the specified expression:

the number of chars in expression Equivalent to length(expression).
the number of words in expression
the number of lines in expression
the number of items in expression

Extracting Words and Lines from Expressions Chapter 7:

110 InData User’s Guide

Handling Repeating Fields
InData can handle repeating fields—fields which can hold more than one value
in the same record—in data exported from FileMaker Pro and other databases
supporting this feature, via InData’s subfield operator (abbreviable to sfld). The
subfield operator extracts one subfield from a repeating field; for example, «sub-
field 2 of k» extracts the second subfield of field k, for example.

Consider the following completed invoice:

The structure of the invoice—the locations of the text frames, their header text
and shading, and so on—are created on the document’s master page. The proto-
type is placed as usual in the text frames on page one of the document.

The address part of the invoice consists of normal prototype statements like the
ones we’ve looked at so far; each line contains one or more field placeholders, and
some lines include if statements for conditional importing. This section of the pro-
totype consumes the first eight fields in each record, and it ends with a new frame
character to force the next field into the main item list text frame (below the
header line starting with QUANTITY).

The prototype for the item list extracts data from four repeating fields in the
data. Here are the prototype statements in the item list area of the invoice:

«repeat with num = 1 to 40¶
«if subfield num of i is empty»«exit repeat¶

«sfld num of i» «sfld num of j» «sfld num of k» «sfld num of l»¶
«end repeat»

This prototype is based around a repeat loop indexed by the variable num. This
loop allows up to 40 subfields to be processed for each repeating field. Our pro-
totype processes four repeating fields in parallel. The third line extracts the suc-
cessive subfields from fields i through l and places them into the invoice. The

»»»»

Manipulating Incoming Data Handling Repeating Fields

InData User’s Guide 111

fourth prototype line ends with a new frame character, forcing the remainder of
the prototype into the total area of the invoice, where each record’s final three
fields are entered into the formatted invoice.

If desired, the subfield delimiter character may be defined via the InData=>
Preferences=>Data… menu item. The default is set correctly for FileMaker Pro.

String Conversion Functions
InData provides several functions for transforming character expressions:

FUNCTION DESCRIPTION

trim(expr) Removes leading and trailing spaces in expr.
trim(expr1,expr2) Removes all characters found in expr2 from the

beginning and end of expr1 .
upcase(expr) Translates expr to uppercase.
downcase(expr) Translates expr to lowercase.
wordcase(expr) Capitalizes the first character of each word to upper-

case (based upon current word delimiters), and con-
verts all other characters to lowercase.

dec2frac(expr) Returns the whole number plus fraction equivalent
(as a string) of its argument interpreted as a decimal
number.

numtochar(integer-expr) Interprets an integer as an ASCII value and converts
it to the corresponding ASCII character (as a single
character string).

chartonum(char-expr) Converts a single character to its integer ASCII value.

We will now consider some examples (assume that a holds “ It was a VERY Good
year! ” and b holds “ Some text here. ”):

EXAMPLE RESULT

«trim(a)» It was a VERY Good year!
«trim (a,"! rI")» t was a VERY Good yea
«trim (a,"!")» It was a VERY GOOD year!
«trim(b," .")» Some text here
«trim(b,"Some text.")» her
«upcase(a)» IT WAS A VERY GOOD YEAR!
«downcase(trim(a))» it was a very good year!
«wordcase(word 1 to 4 of a)» It Was A Very

«dec2frac("1.5")» 1 1/2
«dec2frac("500.125")» 500 1/8
«dec2frac("400.3456")» 400 34/100
«dec2frac("1 XYZ .375")» 1

Handling Repeating Fields Chapter 7:

112 InData User’s Guide

Here is a prototype that sets the fractions resulting from dec2frac() in a more aes-
thetically pleasing way (we have broken the prototype into lines for readability,
but there are not paragraph breaks anywhere within it):

«set itemdelimiter to "/"»
«put dec2frac(a) into frac
«if the number of words in frac = 2»
«word 1 of frac»«item 1 of word 2 of frac»/«item 2 of word 2 of frac»
«else if frac contains "/"»
«item 1 of frac»/«item 2 of frac»
«else»
«frac»
«endif»

If dec2frac(a) results in 2 words, then there is both a whole number and a fraction;
if it returns only one word, then we test for the presence of a slash to see if the
result is a whole number or a fraction (having set the itemdelimiter to a slash at
the beginning of the prototype).

When we find a fraction, we use the item operator to extract the numerator and
denominator separately. We set both in smaller type, raising the baseline for the
numerator, and we replace the slash with a virgule character from the PostScript
Symbol font (Option-6 or Alt-0164).

Here are some sample formatted records:

1
1/2
5001/8
40034/100

We haven’t bothered to kern the characters in the fraction. Note that if you want
to kern a single-character denominator, you’ll need to add a space before the clos-
ing chevron to avoid an InData error.

Here are some examples of numtochar and chartonum:

EXAMPLE RESULT

«numtochar(65)» A
«numtochar(999)» empty string
«chartonum("B")» 66

The chartonum function can be used to determine whether a character is lower-
case or not. The following prototype statement will determine whether the first
character of the contents of field a is lowercase or not (with a true condition indi-
cating a lowercase letter):

«if chartonum(char 1 of a) >= chartonum("a") and
chartonum(char 1 of a) <= chartonum("z")» …

Manipulating Incoming Data String Conversion Functions

InData User’s Guide 113

Note that non-letters (e.g. numbers) are considered non-lowercase by this test.

Here is a prototype which will test whether there are any non-lowercase letters
within a, leaving the result in the variable is_lc (the value true means a is entire-
ly composed of lowercase letters):

«put true into is_lc¶
«repeat with ind = 1 to length(a)¶
«if not(chartonum(char ind of a) >= chartonum("a") and chartonum(char ind of a)
<= chartonum("z"))¶
«put false into is_lc¶
«endif¶
«end repeat¶
«if is_lc» …

Determining the Current Record or Page Number
We’ve already seen the recordnumber function in action. Here we discuss it for-
mally and also introduce the pageinfo function.

The recordnumber function returns the record number of the current record with-
in the data. It returns its absolute number if recordnumber’s argument is false,
counting the first record in the data as record 1; it returns its position with
respect to the number of processed records if recordnumber’s argument is true,
defining as record 1 the first record imported after skipping records in accord
with the settings in the Record Range to Import dialog.

For example, the following prototype statement uses recordnumber to place some
text into the output every fifty records:

«if recordnumber(true) mod 50 = 0» some text¶
«endif¶

The pageinfo function returns information about the insertion point location in
the document during importing. It has the following forms:

FORM RESULT

pageinfo(1) Absolute page number in document.
pageinfo(2) Absolute spread number in document.
pageinfo(3) Relative page number within the

current section of the document.
pageinfo(4) Page location within the current

spread (left page=1, right page=2).
pageinfo(5) Name of the master page applied at this point.

Page and spread numbering within the document and page numbering within
each document section always begins at 1 (regardless of the Page Numbering set-
tings in the Page=>Section… dialog).

String Conversion Functions Chapter 7:

114 InData User’s Guide

For example, if you wanted to have a name be flush right on recto (right-hand)
pages, and flush left on verso (left-hand) pages, you might use a prototype like
this one:

«first» «last»«if pageinfo(1) mod 2 is 1»¶
«else»¶
«endif¶

where the first paragraph is flush right, and the second is flush left; what hap-
pens is that either the first paragraph mark (and its right justification) takes
effect, or the second (and its left justification), depending on whether the current
page number is odd or even.

Note that using pageinfo at the start of a paragraph is error-prone, since the para-
graph, without any text in it, may well fit at the bottom of one page, but once you
add data, jump to the next. As you may surmise, it’s very tricky to use pageinfo
correctly and effectively, and data formatted using this function will obviously not
readjust its format if you edit the imported data.

Accessing Arbitrary Fields within Records
The function fieldvalue may be used to obtain the value of any desired field with-
in the previous, current or next record. It has the general format:

fieldvalue(fnum [,which-rec])

where fnum is the number of the field whose contents are desired (field number
ing begins at 1). The second argument to fieldvalue is optional. If included, which-
rec specifies whether the value from the previous, current, or next record's
fnum'th field is desired, corresponding to which-rec values of 1, 2, and 3, respec-
tively.

Fieldvalue may be used to access the values of both named and unnamed fields
within the data records, though you must declare the maximum number of fields
you plan to use in your fields statement.

For example, fieldvalue(1) returns the value of the first field in the current record,
fieldvalue(25) returns the value of the 25th field in the current record, and field-
value(2,3) returns the value of the second field in the next (upcoming) record. Field-
value returns an empty value if the requested field number is out of range or if
a value other than 1, 2 or 3 is given for which-rec.

The function fieldindex(field-name) may be used to return the field index corre-
sponding to a named field (as defined in the prototype’s fields statement). For
example, fieldindex(name) returns the field index for the name field, and fieldval-
ue(fieldindex(name),1) returns the value in the name field from the previous record.

Manipulating Incoming Data Determining the Current Record or Page Number

InData User’s Guide 115

Similarly, fieldvalue(fieldindex(name) - 1 + idx) returns the value of the idx'th field
after the name field in the current record.

If the argument to fieldindex isn't a bona fide field name, then fieldindex returns
the value 0.

Accessing Arbitrary Fields within Records

116 InData User’s Guide

8
Importing and Formatting Pictures

InData can import variable picture elements along with text. Your input data
must contain a picture filename (or pathname), as a field, for each picture you
want to import, and the individual picture files must reside somewhere in the
accessible file system. Essentially, InData is performing an automatic InDesign
Place... command for each picture you import, with all that implies.

Importing Pictures
Picture importing involves the following:

◆ including one or more anchored picture frames within the prototype;

◆ indicating the source of the filename for each picture frame.

It may also include these steps:

◆ specifying how pictures are to placed into their picture frames, both global-
ly and on a per-picture basis;

◆ specifying where InData is to look for picture files;

◆ specifying what to do if a requested picture file can’t be found.

You can include an anchored picture frame in any InData prototype using the fol-
lowing procedure (which is the standard InDesign method for anchoring graph-
ics within text):

1 Create a picture frame of the desired shape and size using one of the InDesign
picture frame tools.

2 Select the picture frame with the selection tool, and then cut it to the clipboard.

3 Select the content tool, then place the insertion point in the prototype where you
want the picture frame to go, and then choose Paste from the Edit menu .

Indata User’s Guide 117

The picture frame will now be within the prototype.

Here is a simple prototype containing a picture frame:

«fields last, first, picfile, title, addr, phone, fax, telex¶

¶
«set filename of picture 1 to picfile¶
«first» «last»¶
«title»¶
«if addr»Business address: «addr»¶
«endif»«if phone»Telephone: «phone»¶
«endif»«if fax»Telefax: «fax»¶
«endif»«if telex»Telex: «telex»¶
«endif¶

The field picfile holds the name of the picture file for each record. The prototype
statement:

«set filename of picture 1 to picfile¶

tells InData to use the contents of the picfile field in each record as the filename
of the picture to put into the picture frame for that record. The picture number
indicates which picture frame within the prototype the statement refers to
(regardless of any conditional picture frame importing; see below). set filename of
picture may be abbrviated as set fn of pic.

In InData 2.0, you can also import a page of a PDF file as a picture, using the set
pictureimportpage prototype statement. For example, these statements import the
page specified in the pagenum field of the PDF file specified in the picfile field:

«set filename of picture 1 to picfile¶
«set pictureimportpage of picture 1 to pagenum¶
«set pictureimportcrop of picture 1 to 2¶

The final prototype statement sets the cropping for the imported page to the page
itself. See chapter 13 for more information about these prototype statements.

Templates and Imported Pictures
You can save documents with prototypes containing picture frames as InDesign
templates. However, when you generate a new document from the template, you
will need to save the document before pictures will import properly; generally, you
would save the new document to the same folder where the picture files are locat-
ed. Otherwise, InData will fail when trying to locate the pictures as records are

Importing Pictures Chapter 8:

118 InData User’s Guide

imported, even when the template document resides in the same folder as the pic-
ture files (and the error message in this case is quite confusing).

Importing Pictures Conditionally
As it is now, the prototype expects every record to have a picture file. If this is not
the case, then the picture frame may be conditionally imported based upon
whether the field picfile is empty or not:

«fields last, first, picfile, title, addr, phone, fax, telex¶

«if picfile» ¶
«set filename of picture 1 to picfile»«endif¶
…

The complete version of the prototype (a tongue-in-cheek detectives directory) we
examined earlier follows.

Each detective’s entry has a “specialization profile” table, using a fixed set of icons
to represent at a glance the detective’s specialties. The InData template has 4
anchored graphics frames, each of whose contents are fixed, but only imported
if the specialization profile raw data field contains the appropriate code. In order
of their appearances in the frames (beginning at the left), these codes are: m for
murder, d for divorce (and related affairs), s for spying/espionage, and r for ran-
som. The specialization code is the final field in each record (it has been added to
the prototype’s fields statement as specprof). For example, the specialization pro-
file code field value md in a given record would call in the first and second icons.

If its corresponding code letter does not appear in the specialization profile field,
then the filename of the picture file for each picture frame is never set, and so
it remains empty. Note that the empty picture frames act as placeholders to keep
the icons spaced in a fixed pattern.

«fields last, first, picfile, title, co, app, other, career, edu, natlty, addr, phone, fax,
telex,specprof¶
«set pictureposition to aspectratiofit¶

«first» «last»¶
«title»¶

«co»¶«if picfile<> empty» ¶

Importing and Formatting Pictures Importing Pictures

InData User’s Guide 119

«endif¶
«if picfile»«set filename of picture 1 to picfile»«endif¶
«if app»Appointed: «app».«if other» Other positions held: «other»
«endif»«endif»«if career»Career history: «career»¶
«endif»«if edu»Education: «edu»«if natlty»¶
Nationality: «natlty».«endif»¶
«endif»«if addr»Business address: «addr»¶
«endif»«if phone»Telephone: «phone»¶
«endif»«if fax»Telefax: «fax»¶
«endif»«if telex»Telex: «telex»¶
«endif¶
Areas of Specialization: ¶

«if specprof contains "m"»«set fn of pic 2 to "murder.pict"»«endif¶
«if specprof contains "d"»«set fn of pic 3 to "divorce.pict"»«endif¶
«if specprof contains "s"»«set fn of pic 4 to "spy.pict"»«endif¶
«if specprof contains "r"»«set fn of pic 5 to "ransom.pict"»«endif¶

You may examine and experiment with this prototype if you like. It may be found
in the Detectives folder in the InData Samples folder.

There are some sample typeset records:

Susan M. Barnes
President
Barnes & Daughters, P. I.

Appointed: 1980. Other positions held: Member, Private Investigators of America;
Director, Boston Private Investigation Society; Senior Member, Dorothy L. Sayers
Detection Club.
Career history: 10 years as co-owner of Hanratty Detection Service; 5 years as
apprentice sleuth at Dominic & Associates.
Education: PhD Economics 1969, London School of Economics; MA 1965, Harvard
School of Government; BA 1962, Radcliffe College.
Nationality: British.
Business address: 1011 Beacon Street, Boston, MA 01299
Telephone: 001 (617) 232-9912 Telefax: 001 (617) 232-9915 Telex: 822911
Areas of Specialization:

Importing Pictures Chapter 8:

120 InData User’s Guide

Fenton C. Hardy
Chairman
Hardy & Sons, P. I.

Appointed: 1930. Other positions held: Director, Hardy Investment Trust; Trustee,
Hardy Share Ownership; Trustee, Hardy Rare Car Collection; Founder, Dorothy L. Say-
ers Detection Club.
Career history: Police Detective, New York City, 1920–1930. Founded private detection
practice, 1930. Retired, 1965.
Education: BA 1918, Columbia University.
Nationality: American.
Business address: 120 Bayshore Lane, Bayshore, NY 10172.
Telephone: 001 (718) 606-4455 Telefax: 001 (718) 638-7291
Areas of Specialization:

Setting Picture Frame Attributes
Keep in mind that the imported picture will take on all characteristics of the
empty picture frame. These include:

◆ picture scaling;
◆ picture offset within the picture frame;
◆ angle of the picture within the picture frame;
◆ shearing (skew) of the picture within the picture frame;
◆ frame colors and shades;
◆ picture flipping (horizontal and/or vertical);
◆ clipping path (used for text wrapping);
◆ frame (stroke) around the picture frame.

In order to set the color and shade of imported pictures, along with any other
image attributes, you will need to place a sample picture within the correspond-
ing picture frame in the prototype and then set those attributes for that picture
(the picture itself will be replaced upon import). All other attributes--i.e., frame
attributes--may be set for an empty picture frame, and they will be inherited by
the imported pictures. In fact, these values will override any that are present in
the image itself (e.g., clipping paths).

You may also specify the placement and fit for all imported pictures within their
picture frames using the Default picture position pop-up menu in the InData

Importing and Formatting Pictures Importing Pictures

InData User’s Guide 121

General Preferences dialog (select InData=>Preferences=>General… from the
InDesign menu).

The InData General Preferences dialog has the following options:

Top left Place the picture’s upper left corner in the upper left corner of
the picture frame (the InDesign default).

Center Center the picture within the picture frame.

Center, Size to Fit
Scale the picture to fit the picture frame exactly.

Center, Size to Fit, w/o Distortion
Scale the picture to fit the picture frame, maintaining its aspect
ratio (original proportions), and then center it within the picture
frame.

Size Frame to Picture
Shrinks the anchored picture frame to fit its contents (once they
are imported), obeying any scaling and margin picture frame
properties (see chapter 5), and ignoring any offset picture frame
properties.

Size to Fit Horizontally, then Size Frame Vertically to Picture
Sizes the picture itself in its anchored picture frame to fit hori-
zontally (i.e., to fill the frame in the “x” direction) once the picture
is imported, sets the picture’s y scale to match its x scale (as
determined above by making it fit horizontally), and then
shrinks the anchored picture frame itself vertically to make it fit
the contained picture.

You can also set the picture handling for an individual picture frame with the set
pictureposition statement (abbreviable to set picpos). We saw an example of this
prototype statement in the Directory of Detectives. This prototype statement has
the general form:

«set pictureposition of picture n to fit»

where n is the index (number within the prototype) of the picture frame whose
properties are to be set, and fit is a keyword specifying its placement and fit
option, one of: topleft, center, fit, aspectratiofit, framefit, and fithframev .

Prototype Statements for Setting Picture Frame Attributes
Many picture frame properties may also be set within the prototype, allowing you
to control an anchored picture frame’s height and width, the image’s x and y off-
set (how the picture is shifted within the frame in either dimension), the image’s

Setting Picture Frame Attributes Chapter 8:

122 InData User’s Guide

x and y scale (shrinking/expanding the picture within the frame in either dimen-
sion), and the image’s x and y margin (how much extra or less space to give the
picture in each dimension when using the two Size Frame to Picture options).

These properties are set using the following «set» statement formats:

«set [the] height of picture n to measurement» picture frame height
«set [the] width of picture n to measurement» picture frame width
«set [the] xoffset of picture n to measurement» image’s horizontal offset
«set [the] yoffset of picture n to measurement» image’s vertical offset
«set [the] xscale of picture n to percentage» horizontal image scaling
«set [the] yscale of picture n to percentage» vertical image scaling
«set [the] xmargin of picture n to measurement» horizontal image margin/trim
«set [the] ymargin of picture n to measurement» vertical image margin/trim

All measurement values default to points unless other units are explicitly speci-
fied (any measurement specification that you can type in the equivalent mea-
surements palette edit field is supported), and percentage is a percentage value,
with or without a trailing percent sign (“%”). If a given value is out of range, it
is silently reset to the nearest minimum or maximum value (for example, you
can’t set the x or y scale to less than 10% or more than 1000%, and a specified
value of 5% would result in 10% being used). If a picture is not imported into a
given frame, because the picture import failed for some reason, only the height
and width properties of the frame will be obeyed; all other properties you have
set will be ignored.

For example, both of the following prototype statements set the height of picture
frame 2 to one inch:

«set height of picture 2 to 72»
«set height of picture 2 to “1"”»

Observe the two two curly quotes enclosing the 1 followed by a straight quote in
the second statement.

Integer arithmetic expressions may be used for measurements. Thus, this pro-
totype statement sets the width of picture frame 1 to 288 points (4 inches):

«set the width of picture 1 to 72*4»

The following prototype statement sets the scaling for the picture in the first pic-
ture frame to the value in a field scale_fac:

«set xscale of picture 1 to scale_fac»
«set yscale of picture 1 to scale_fac»

The x and y margin settings are only used in the two Size Frame to Picture and
Size to Fit Horizontally, then Size Frame Vertically to Picture picture position-
ing cases, and they specify how much margin to add (if positive) or subtract (if

Importing and Formatting Pictures Setting Picture Frame Attributes

InData User’s Guide 123

negative) from the picture’s natural width or height (respectively) on each edge
before calculating the frame’s width or height. These margins are in “document
space,” and thus are not scaled with the picture. If you don’t specify these mar-
gins, they default to zero.

For example, if you wanted to cut off 2 points on each side of a picture horizon-
tally before adjusting the frame to fit the picture, and after scaling the picture
50% in each dimension, but cut off nothing vertically, you’d use a sequence of pro-
totype statements like the following:

«set xscale of pic 1 to 50»
«set yscale of pic 1 to 50»
«set xmargin of pic 1 to -2»

Setting Default Directory Locations for Picture Files
By default, the picture filename in the data field must give the exact location of
the picture file. If it is in the same folder as the current document, the filename
alone is sufficient; otherwise, the complete path to the picture file must be spec-
ified.

However, you can give InData a list of locations to look in for pictures files, using
the set picturefolders prototype statement; this statement requires a comma-sep-
arated list of folders as its argument. Folder names may be absolute (for exam-
ple, Data:Pictures:, meaning the folder Pictures on disk Data), or relative (:Old Pic-
tures:, referring to a folder named Old Pictures in the same folder as the current
document). Note that on the Macintosh, all folder names use colons to separate
one level from another, and also always end with a colon.

The principle is the same on under Windows. Folder names may be absolute (for
example, C:\Data\Pictures\, meaning the directory \Data\Pictures on disk C:), or rel-
ative (Old_Pix\, referring to a folder named Old_Pix in the same directory and disk
as the current document). Note that all folder names use backslashes to separate
one directory level from another, and also always end with a backslash.

For example, if your document is named Spices, located in the folder named Cat-
alog, and pictures it needs are located in that folder, the folder Old Pictures with-
in that folder, and in the folder named Design on the disk named Themis, you
would use the following set picturefolders statement:

«set picturefolders to ":Old Pictures:,Themis:Design:"»

Note that the set picturefolders statement must precede any set filename state-
ment within the prototype which relies on it. Directories listed in this prototype
statement may be regular directories or aliases (shortcuts) to them.

Multiple set picturefolders statements may appear in the prototype. If you use
more than one of them, be sure that the initial path is always (re)set correctly
at the start of the prototype.

Setting Default Directory Locations for Picture Files Chapter 8:

124 InData User’s Guide

It is also possible to specify the picture folder within the set filename statement,
as in this example:

«set filename of picture 1 to ":Photos:" & pixfilename1 & ".TIF"»
«set filename of picture 2 to ":Drawings:" & pixfilename2 & ".EPS"»

These statements use the string concatenation operator & to add both a folder
location and a standard extension to the picture filename that is imported via the
pixfilenamen fields in each record.

Handling Missing Picture Files
Normally, when InData can’t find a requested picture file, data importing stops
immediately, and InData displays an error message. You can change this behav-
ior so that InData continues importing additional records anyway (and gives a
warning about any missing pictures when finished). To do so, check the Keep
importing after missing pictures checkframe in the InData General Preferences
dialog.

You can also use the fileexists(path) function to determine if a given file exists.

Specifying Precise Picture Locations on the Page
So far, we’ve considered only picture frames which flow along with the import-
ed text. Sometimes, however, you will want to precisely position the picture
frames on the page.

This may be accomplished in many cases by creating text frames in the desired
locations on the document’s master page and then using new frame characters to
place text within them as records are imported. We’ll consider an example taken
from the Real Estate document in the Houses folder of the Samples folder.

The master page for this document has four text frames on it, placed in an artsy
arrangement. The prototype will place one picture and its accompanying descrip-
tive text into each text frame on each page:

Here is the prototype (we’ve shrunk the picture frame considerably):

«fields picfile,description,price¶
«set picpos to aspectratiofit¶

¶
«set filename of picture 1 to picfile¶
«put styled description»¶

$«price»«if next picfile is not empty»
«endif»

Importing and Formatting Pictures Specifying Precise Picture Locations on the Page

InData User’s Guide 125

Here is the general layout of a completed page (examine the sample file itself for
a closer look):

Specifying Precise Picture Locations on the Page

126 InData User’s Guide

9
Controlling Document Layout

InData can produce running headers and footers which change from page to
page, based on the contents of the imported data. For example, a telephone direc-
tory might have the last names of the first and last people on each spread in its
top outside corners, or a product list might have the product type in the page
header.

There are three basic steps to creating a running header or footer:

◆ Placing a mark in the prototype—producing what we’ll call marked text at
data import time—which means designating an expression (usually a field)
as the source of the running header/footer text.

◆ Adding a mark reference to a header or footer text frame on the document’s
master page, which serves as a placeholder for the final header or footer text.

◆ Importing the data as usual.

InData automatically computes the running headers and footers after importing
all records by updating all mark references on all pages affected by the import
operation.

Creating a Mark in the Prototype
The put marked statement is used to tell InData to insert the contents of a field
into each imported record and to give it a name by which it can be referred to in
running headers/footers.For example, the following prototype statement inserts
the dept field into the prototype, marking it as A:

«put dept marked “A”»

You may wonder why we have to assign a new name to the dept field when it
already has one. The marked keyword is actually quite flexible, and it may be used
to mark not only field names but any expression: char 1 of lastname, for example.
In the latter case, a name needs to be assigned to the resulting text in order to
refer to it from a header or footer.

InData User’s Guide 127

All InData mark names consist of a single letter, and are case insensitive. The
mark name can be a literal character string (in double quotation marks) or an
expression. If the mark name is longer than one character in length, only the first
character will be used.

The hidden keyword may be included after put to create a mark for text which you
don’t want to be visible in the formatted records. For example, the following put
statement inserts a last name, prefixed with an invisible mark consisting of the
first letter of the last name. A header or footer referring to mark L will pick up
just the first character of the last name.

«put char 1 of last hidden marked "L"»«last»¶

One caveat is that «put ... hidden ...» actually uses a zero-width discretionary
hyphen as the marked text placeholder, which will disable automatic (but not
manual) hyphenation for any immediately-following word.

In fact, a more efficient method to achieve this same effect is:

«put char 1 of last marked "L"»«char 2 to length(last) of last»

Adding a Mark Reference to the Master Pages
Once you’ve created a mark in your prototype, you must next define a mark ref-
erence to that mark before importing any data. A mark reference serves as a
placeholder for the contents of a mark. It is created by entering some literal text
into a header or footer frame on a document’s master page, selecting it, and then
designating it as a mark reference by using the InData Make Header/Footer dia-
log.

Note that the text frames into which the mark references are placed on the mas-
ter page may not be linked to any other text frame (including each other).

The placeholder text used as a mark reference in running headers is simply any
literal text that you choose to use. It requires no special chevron marks. It’s a good
idea to choose text that will remind you of what will replace it when data is
imported. For example, you might enter the text Dept into a header to be used
as a mark reference for the mark A we defined earlier.

Mark reference text can coexist with other text within a header or footer. For
example, you may also include literal text within the header/footer, and you may
include more than one mark reference within the same header or footer.

Next, apply any character and paragraph attributes and style sheets to the mark
reference text. Be sure to do so before designating the text as a mark reference.

To designate text as a mark reference, select it with the content tool, and then
select Make Header/Footer... from the InData menu.

Adding a Mark Reference to the Master Pages Chapter 9:

128 InData User’s Guide

This option brings up the Make Header/Footer dialog.

This dialog allows you to associate the first or last occurrence of a specified mark
with the header or footer text you have highlighted, transforming the latter into
a mark reference. Choosing first means that the first instance of the marked
imported text on each page (or spread, if spread is checked) will be substituted in
the placeholder’s location on the page. Similarly, turning on the last radio button
means that the final instance of the marked imported text on each page (or
spread) will go into the page’s header (or footer).

The Limit initial search for the first occurrence of marked text checkbox allows
you to specify a range of lines in which the first marked text must be found in
order for it to be used in the header or footer. You specify the number of lines in
the text frame preceding line(s). By default, marked text found anywhere on the
page will be used.

The Reference marks from previous pages checkframe controls what happens if
no marked text is found on a particular document page. If it is checked, then any
marked text from the most recent previous page will be used. In this case, you can
optionally append a string—for example, continued—to the text by entering it into
the field following appending. Note that XPress Tags are supported in this field.

After importing data into the document, InData will automatically create the
running headers and footers for each page, based on your mark references in the
header and footer frames and any associated marked data in the formatted text
on the page.

Controlling Document Layout Adding a Mark Reference to the Master Pages

InData User’s Guide 129

The following diagrams illustrate the header/footer creation process:

➥

Updating Existing Headers and Footers
Although running headers and footers will be created automatically when the
data is imported, they are not updated automatically if you make subsequent
changes to the formatted records. However, you can always instruct InData to
update them at any time.

For example, suppose that you changed the definition of a paragraph style used
in the formatted data, editing the space below or space above setting. This would
cause QuarkXPress to reflow the formatted text, and possibly invalidate the
InData-created running headers and footers (given that pages will now break
at different points). To re-create the headers, you would place the insertion point
in the story containing the imported data, and then choose Update Headers/Foot-
ers... from the InData menu; InData would then go through all the pages touched
by the imported data, and synchronize all of the headers and footers with respect
to the new data layout.

It’s also possible to edit individual elements of (non-hidden) marked text, if you
find errors, though it’s slightly tricky. For example, suppose that you were using
the dept field in a running header and you noticed a typographical error in the

Jones Mitchel l

Jones, Mary
555-1212

Josephson, Margo
333-2244

...

...

Mitchell, Calvin
444-5866

Formatted document

after data importing
with the automatically-

generated headers.

Headers containing

mark references
created on the
document’s

master page.

First_lname Last_lname

«fields lname, first, phone¶
«put lname marked “A”¶
«lname», «first»¶
«phone»¶

The InData prototype,
specifying the lname

field as mark A.

Adding a Mark Reference to the Master Pages Chapter 9:

130 InData User’s Guide

first record on a given page. Then, this error would also appear in the page’s run-
ning header.

One way to correct this error would be to return to the original database appli-
cation, correct the error, re-export the data to a file for use by InData, and final-
ly re-import that data.

While you probably would want to correct the error in the original database at
some point, you could also directly correct the error in the imported record, and
then use InData’s ability to update the document’s generated headers and foot-
ers. Note that you do not correct the error by editing the header/footer directly.

Only very minor changes—such as correcting typographical errors—may be
made to the imported marked data and still be correctly updated in the docu-
ment’s running headers and footers. In particular, replacing the entire marked
field contents will not work as desired, unless you take special precautions.

InData places hidden characters around the imported text; it searches for these
hidden characters when creating or updating running headers and footers. If this
mark is deleted—as it will be if you select the entire marked text and then type
over it—then the mark for that data is forever lost. If you want to replace the
entire contents of the marked text, then the only safe way to do so is to place the
cursor somewhere in the middle of the string, add in the new text, and then care-
fully delete the old text from the “middle out”: in other words, use delete forward
for characters to the right of the new text, and the delete key for characters to the
left of the new text.

Changing the Headers and Footers Themselves
It is also a bit tricky to change the format or content of the headers and footers
themselves once you have imported data. Here are the steps for doing so:

1 Delete the existing mark reference text that you want to change. It is often a good
idea to delete and recreate the entire header or footer.

2 Create and style new text for the header or footer.

3 Select the mark reference text, and designate it as such by selecting InDa-
ta=>Make Header/Footer… from the menu.

4 Return to the normal document pages and import additional data (if necessary).
Then instruct InData to update the headers and footers (InData=>Update Head-
ers/Footers…).

Controlling Document Layout Updating Existing Headers and Footers

InData User’s Guide 131

Applying Master Pages within a Prototype
InData provides two statements for applying a master page (or spread) to a doc-
ument page or spread as data is imported:

«set master of this item to pagename
«set firstmaster of this item to pagename

where item is either page or spread, depending on which of them you wish to
apply the master page/spread to, and pagename is the name of the master
page/spread that you want to apply.

Master names may be specified by giving only the descriptive name that follows
their letter designation or their complete name (including the letter prefix). For
example, you could refer to master B as either Chapter Start or B-Chapter Start.

For example, the following prototype statement would set the master page of the
current document page to master page B when it was encountered during data
importing:

«set master of this page to "Chapter Start"

The set master and set firstmaster statements differ in how multiple occurrences
of within the same page (or spread) are treated. For set master, the final instance
of the statement is the one that will be used and accordingly determine which
master page is applied. For set firstmaster, the first statement encountered on a
page has precedence, and all subsequent set firstmaster statements are ignored.

We do not recommend mixing the two types of master page application state-
ments within a prototype. However, should you do so, note that set master has
precedence over set firstmaster.

Here is a more complex prototype using this feature:

«if fundname<>prev fundname»
«endif¶
«if fundage•0»«set master of this page to "New Fund"¶
«else if fundage<5»«set master of this page to "Young Fund"¶
«else»«set master of this page to "Normal Fund"»«endif¶

This prototype formats a catalog of mutual fund offerings. Each mutual fund’s
entry begins on a new page (forced by the new frame character). The page can
have three different layouts, depending on how long the fund has been in exis-
tence (and hence how much restrospective performance data there is to present).
If the fundage field is non-positive, then the master page New Fund is applied to
the current page. If this field is greater than zero but less than 5, then the mas-
ter page Young Fund is applied to the current page. Finally, if the value in fundage
is greater than 5, then the master page Normal Fund is applied.

Applying Master Pages within a Prototype Chapter 9:

132 InData User’s Guide

Care needs to be taken when applying master pages to the current spread rather
than the current page so that the desired results are accomplished. For example,
if a set master of this spread statement is encountered on a right-hand (odd) page,
then it will have the effect of potentially changing the layout of the previous doc-
ument page, which may not always be what you intend.

Applying master pages with these prototype statements allows you to achieve a
variety of effects, including the following:

◆ Applying different page layouts to different types of records.

◆ Using a special page layout for the first record within a group of records (for
example, when the type of item changes within a catalog).

◆ Making headers/footers appear or change when the value in some specific
field changes (or takes on some specific value).

These master page application features may be used in conjunction with the
automatically generated header/footer capabilities we considered earlier in this
chapter.

Controlling Document Layout Applying Master Pages within a Prototype

InData User’s Guide 133

134 InData User’s Guide

10
Advanced Prototypes

This chapter discusses advanced features of Indata prototypes. The Indata pro-
totype language includes the ability to define variables and solicit user input dur-
ing the import process. We’ll look at these and other advanced prototype state-
ments and capabilities in this chapter.

Record Input Control Statements
This section will formally introduce three prototype statement used to control
how records are read relative to prototype processing: next, read and exit.

The read statement is used to read in the next record in the data file immediate-
ly and apply the remainder of the prototype to it. The record being processed
before the read statement is encountered then becomes the previous statement
for the purposes of the previous keyword.

The read statement is useful when repeating all or part of a record within a pro-
totype; it tells InData when to go on to the next record of data. (Note that there
is an implicit read statement at the start of every prototype.)

The next statement is used to skip the rest of the prototype for the current record
and begin again at the beginning with the next record in the data file.

The exit statement is used to stop processing immediately, skipping all further
records and any remaining prototype statements. InData returns control to InDe-
sign whenever it encounters an exit statement.

The following prototype illustrates the use of the next and exit statements. It
might be used to create a company directory:

«fields last, first, room, ext»«if last >= "M"»«exit»«endif¶
«last», «first»«if room < 200»¶
«next»«else» «ext»¶
Room «room»¶
«endif¶

Formatted records look like this:

InData User’s Guide 135

Crashaw, Richard 272
Room 515

The next command causes the ext and room fields’ formatting to be skipped if the
value in the room field is less than 200—if the room number is in the 100’s, per-
haps used for temporary offices.

If the last field’s value is greater than or equal to the string “M”—in other words,
if it is alphabetically at or after “M,” which includes any string beginning with
a M or a later letter in the ASCII collating sequence—then processing ceases (this
presupposes that the data file is sorted by the last field). A technique such as this
is useful for processing a data file in two passes, once with the comparison set
to “greater than,” and once with it set for “less than or equal” whatever is used as
the cutoff point.

Here is a more complex example using read and next. This prototype formats a
simple status report for credit card accounts. Some of the account numbers in its
data refer to the same real account (for example, a husband and wife both having
cards but sharing one account). Such accounts are set up to differ in their least
significant account digit, so they will always follow one another in data files sort-
ed by account number, and the primary account will always come first.

Another field in the data file—named secondary in the prototype—is a flag indi-
cating whether a main account has a second card on it or not. This prototype
checks the secondary field, and if it is set to 1 (on), it processes its record in the
data file as well:

«fields acct,balfwd,lastpay,newpur,int,cadv,newbal,secondary¶
Acct.: «acct» Balance Forward: «balfwd»¶

Last Payment: «lastpay»¶

Interest: «int»¶

New Purchases: «newpur»¶

Cash Advance Fees: «cadv»¶

NEW BALANCE: «newbal»¶
«if secondary<>1»«next»«else»«read»¶
2ndary Acct.: «acct» Balance Forward: «balfwd»¶

Last Payment: «lastpay»¶

Interest: «int»¶

New Purchases: «newpur»¶

Cash Advance Fees: «cadv»¶

NEW BALANCE: «newbal»¶
«endif¶

»»

»»

»»

»»

»»

»»

»»

»»

»»

Record Input Control Statements Chapter 10:

136 InData User’s Guide

A more complex example of read is found in the Features document in the InDa-
ta Samples folder. The prototype processes two data records each time it is used,
shading one imported record and leaving the other one unshaded, by performing
a read operation to retrieve the second record. Here is the prototype:

«a» «[b="x"»•«]»«[b="n"»n/a«]»«[c="x"»•«]»«[c="n"»n/a«]»«[d="x"»•«]»«[d="n"»n/a«]»
«[e="x"»•«]»«[e="n"»n/a«]»«[f="x"»•«]»«[f="n"»n/a«]»«[g="x"»•«]»«[g="n"»n/a«]»
«[h="x"»•«]»«[h="n"»n/a«]»«[i="x"»•«]»«[i="n"»n/a«]»«[j="x"»•«]»«[j="n"»n/a«]»«[k="x"»•«]»«[k="n"»n/a«]»
«[l="x"»•«]»«[l="n"»n/a«]»«[m="x"»•«]»«[m="n"»n/a«]»«[n="x"»•«]»«[n="n"»n/a«]»
«[o="x"»•«]»«[o="n"»n/a«]»«[p="x"»•«]»«[p="n"»n/a«]»
«read»«a»«[b="x"»•«]»«[b="n"»n/a«]»«[c="x"»•«]»«[c="n"»n/a«]»«[d="x"»•«]»«[d="n"»n/a«]»
«[e="x"»•«]»«[e="n"»n/a«]»«[f="x"»•«]»«[f="n"»n/a«]»«[g="x"»•«]»«[g="n"»n/a«]»
«[h="x"»•«]»«[h="n"»n/a«]»«[i="x"»•«]»«[i="n"»n/a«]»«[j="x"»•«]»«[j="n"»n/a«]»«[k="x"»•«]»«[k="n"»n/a«]»
«[l="x"»•«]»«[l="n"»n/a«]»«[m="x"»•«]»«[m="n"»n/a«]»«[n="x"»•«]»«[n="n"»n/a«]»
«[o="x"»•«]»«[o="n"»n/a«]»«[p="x"»•«]»«[p="n"»n/a«]»

Import records into the sample document in order to view some sample format-
ted records. Note that this can also be accomplished using the recordnumber(true)
mod 2 = 1 construct.

(Note that Microsoft Word’s mail merge facility also includes a “next” command.
It has the meaning of InData’s read command. Don’t confuse them.)

Setting Variables
InData supports user-defined variables. These variables may be used as con-
stants (i.e., statically) or be updated throughout the import process.

For example, the following statement defines a variable myname and sets its
value to the indicated string via the put statement:

«put "Cassandra Temple" into myname»

Once set, variable values are referenced in the same way as fields; enclosing a
variable name in « and » marks causes its value to be placed into the prototype:
«myname» would place Cassandra Temple into the formatted records, after the put
statement above.

All variables start off empty; therefore, testing whether a variable is empty is one
way to determine if it needs to be initialized. For example, this statement sets the
value of counter to 1 if it is not defined; otherwise, it increments it:

«if counter=empty¶
«put 1 into counter¶
«else¶
«put counter+1 into counter¶
«endif¶

A variable like this one might be used to perform some action every so many
records during an import process, where not every processed record is inserted
into the document (otherwise, using recordnumber is much easier way of doing

Advanced Prototypes Setting Variables

InData User’s Guide 137

this). For example, the following prototype creates one line in the formatted data
for each record where the part_num field is less than 100,000, placing a ruled line
after every 25 formatted records:

…
«if part_num < 100000»«next»«endif¶
«part_num» «descr» «unit» «disc» We’ve added a line break here
«if counter=empty»«put 1 into counter¶ for readability.
«else»«put counter+1 into counter»«endif¶
«if counter = 25»«put 0 into counter»¶

«else»¶ End the normal paragraph
«endif¶

The first statement skips the rest of the current record if the part_num field’s
value is too high. The second line inserts and formats four data fields. The third
and fourth lines increment the value of counter, setting it to 1 if this is the very
first record chosen for importing, and adding 1 to its current value in all other
cases. Note that line three is really part of the second line, but we’ve inserted a
line break in this manual for clarity. The final if statement (lines 6-8) determines
whether counter has reached 25 yet. When it does, it places a ruled line (via the
literal paragraph mark at the end of line 6) into the InDesign document, and
resets counter’s value to 0 to start counting over again. Otherwise, it simply adds
a normal paragraph mark to the end of the current line.

You can use similar techniques to produce complex patterns of ruling and shad-
ing within the formatted data.

Manually Wrapping Text Columns by Words
Here is a more complex prototype which makes extensive use of InData prototype
variables and repeat loops. Because of its length, we’ve included our comments
within the prototype and we’ve formatted them for easier reading:

«—set up column widths (# characters) ¶
«put 25 into col1width¶
«put 32 into col2width¶
«put 15 into col3width¶
«—copy fields to variables ¶
«put a into col1¶
«put b into col2¶
«put c into col3¶
«repeat 50 —loop until all columns are exhausted, but ¶
« —use 50 as a fail-safe in case we have a bug :-) ¶
«—this is the loop for column 1 ¶
«put the number of words in col1 into nwcol1¶
«repeat —fit as many words from col1 on this line as we can ¶
«if nwcol1 <= 1 or length(word 1 to nwcol1 of col1) <= col1width¶
«exit repeat¶
«endif¶

»»»

Setting Variables Chapter 10:

138 InData User’s Guide

«put nwcol1 - 1 into nwcol1 —not all the words fit: step back 1 word & check again.
¶
«end repeat¶
«—this is the loop for column 2¶
«put the number of words in col2 into nwcol2¶
«repeat —fit as many words from col2 on this line as we can ¶
«if nwcol2 <= 1 or length(word 1 to nwcol2 of col2) <= col2width¶
«exit repeat¶
«endif¶
«put nwcol2 - 1 into nwcol2 —not all the words fit ¶
«end repeat¶
«—and this loop is for column 3 ¶
«put the number of words in col3 into nwcol3¶
«repeat —fit as many words from col3 on this line as we can ¶
«if nwcol3 <= 1 or length(word 1 to nwcol3 of col3) <= col3width¶
«exit repeat¶
«endif¶
«put nwcol3 - 1 into nwcol3 —not all the words fit ¶
«end repeat¶
«—here is the line that actually outputs text: ¶
«word 1 to nwcol1 of col1» «word 1 to nwcol2 of col2» «word 1 to
nwcol3 of col3¶
«—remove the text we just wrote out from the three variables ¶
«put word nwcol1+1 to (the number of words in col1) of col1 into col1¶
«put word nwcol2+1 to (the number of words in col2) of col2 into col2¶
«put word nwcol3+1 to (the number of words in col3) of col3 into col3¶
«—test whether there is any text left in any of the column variables¶
«if length(col1) = 0 and length(col2) = 0 and length(col3)=0¶
«—if we’re done, output paragraph mark (with space after) & exit¶
¶

«exit repeat¶
«else —we’re not done, so just output a Shift-Return to end the current line¶
¯
«endif¶
«end repeat¶

Here are some sample formatted records:

COLUMN 1 COLUMN 2 COLUMN 3

There is a whole lotta One quick, brown fox jumping She sells sea
lotta text going on and over the lazy dogs is as good as shells on the
on and on and on. another. leeward side of

the seashore.

Now is the time for all Why is all this text so very very How many chuck
of the good women to come silly silly??? steaks would a
to the aid of themselves wood cutter’s
and their children. daughter eat if

she were hungry?

»»

Advanced Prototypes Setting Variables

InData User’s Guide 139

You can examine this prototype in more detail by studying the Column Wrapping
document in the InData Samples folder.

Implementing Fixed-Width Fields
The trim function can be used in conjunction with character extraction and pro-
totype variables to handle fixed-field input. To do so, first disable all field and sub-
field delimiters and the quote character, and select an appropriate record termi-
nator (if yours is non-standard) using the Data Preferences dialog (or the Data...
button in the InData control panel). Disabling these fields is accomplished by
removing all characters from the corresponding dialog field.

Then use a prototype like this one:

«—records contain the fixed fields name(25), addr(55), phone(20)¶
«fields inputLine¶
«—store fields into variables¶
«put trim(char 1 to 25 of inputLine) into name¶
«put trim(char 26 to 80 of inputLine) into addr¶
«put trim(char 81 to 100 of inputLine) into phone¶
«—output the data; this is a simple example: ¶
Name: «name»¶
Address: «addr»¶
Phone: «phone»¶

Testing the Data Type of Expressions
InData includes the HyperTalk type-comparison operator is a[n] type, where type
is integer, number or logical. This operator results in true if and only if its left
operand can be legally construed as an element of its right operand type (other-
wise, false, and no error results in any case). Here are some examples:

EXAMPLE RESULT
«1 is an integer» true
«1 is a number» true
«1.1 is an integer» false
«1.2 is a number» true
«1.2 is a logical» false
«true is a logical» true
«false is a logical» true
«true is an integer» false
«“a” is an integer» false
«“a” is a number» false
«“a” is a logical» false

Setting Variables Chapter 10:

140 InData User’s Guide

Soliciting Input at Import Time
The ask prototype statement may be used to obtain input during the import
process. The ask statement must be followed by an expression which will be dis-
played to the user in a dialog. The question may optionally be followed by the key-
word with and another expression. If the with clause is included, its expression will
be used to pre-fill in the answer text in the dialog. Here is an example:

«if value=""»«ask "Enter value code:" with "CPX-921-V"»«endif»

The illustration shows a sample ask statement and the dialog it produces. The
value returned by ask is placed into the built-in variable it; it may be used in pro-
totype statements like any global variable and be inserted into the output records
by enclosing it within chevron marks:

«ask … »«if it<>""»«it»¶
«endif¶

Note that the expressions «prev it» and «next it» are not meaningful, since it is not
a field.

Asking More than One Question
If you want to issue multiple ask statements while processing a single record,
then you may have to save the value of it in a variable after each one if you can-
not use it immediately. For example:

«if price=""»«ask "Enter the price:"»«put it into newprice»«endif
«if quantity=""»«ask "How many?" with "1"»«put it into quan»«endif

Asking Only Once
Sometimes you only want to issue a prompt a single time. For example, if you
want to ask the user something prior to processing the incoming records, use a
prototype like this one, which issues a prompt if the filename field in the first data
record is empty:

«if recordnumber(true)=1 and filename is empty»«ask …»«endif
import the data

Advanced Prototypes Soliciting Input at Import Time

InData User’s Guide 141

If you want to ask the user something only once, but do not know in advance
where within the imported records the prompt will be needed, use a prototype
like this one:

«if recordnumber(true)=1»«put false into asked»«]»
«if a="" and not asked»«ask "Tell me:" with "yes"»
«put true into asked»«]¶
«if a»«a»«|»«it»«]» «b»¶

This prototype uses the variable asked to keep track of whether it has issued the
prompt yet. Subsequent records with empty first fields will import the same
response that the user gives when the first empty a field is encountered.

Using Multiple fields Statements
InData will accept more than one fields statement within a prototype, as long as
the following restrictions are met:

◆ All of the fields statements must be outside of conditional prototype stat-
ments.

◆ No fields statement may re-define a field name defined in any previous fields
statement, placing it in a different position within the field list. However, a
fields statement may re-define a field name defined in a previous fields state-
ment (or built into InData), as long as it is placed in the same position in the
field list.

The following illustration provides an example of a prototype which uses multi-
ple fields statements:

«fields type,lname,fname,addr1,addr2,city,state,zip¶
«fields type,corp,div,addr1,addr2,city,state,zip4¶
«fields type,edu,school,dept,addr,city,state,zip4¶
«if type=1»Dr. «fname» «lname»¶
«addr1»¶
«if addr2»«addr2»¶
«endif»«city», «state» «zip»¶
«else if type=2»«corp»¶
«div»¶
«addr1»¶
«city», «state»¶

«zip4»¶
«else if type=3»Dept. Chair., «dept» Dept.¶
«edu»¶
«school»¶
«if addr»«addr»¶
«endif»«city», «state» «zip4»¶
«endif — ignore all other record types¶

»

Soliciting Input at Import Time Chapter 10:

142 InData User’s Guide

The prototype produces mailing labels for three different types of records with-
in the data. It decides which one to produce based upon the value in the type field,
which is common to all three record structures. The field names defined in the
three fields statements are each used for a different type of record. Using multi-
ple fields statements in a case like this can make the prototype much more intu-
itive and easier to read.

Inserting Styled Text and Text Files
The put styled prototype statement can be used to place text files and text con-
taining formatting codes into an InDesign document. This feature allows InData
to support XPress Tags styled text in fields, which we mention here for the ben-
efit of former users of QuarkXPress.

This feature uses the put styled statement, whose simplest form is:

«put styled expression»

where expression is often (but is not limited to) a field name. For example, the fol-
lowing prototype statement inserts the field title into the formatted record and
designates it as a styled field containing XPress Tags formatting instructions:

«put styled title»

You can also designate all of the fields in a prototype as styled, with one prototype
command:

«set defaultisstyled to true»

This statement is often placed near the beginning of the prototype (for example,
after the fields statement). Note that there is no harm in designating a field with-
out XPress Tags information as styled unless it contains angle brackets (< >) or
commercial at-signs (@) which might be misinterpreted. You can always use «put
unstyled expression» (discussed later) to insert the given string without style tags
interpretation, regardless of the defaultisstyled setting.

When the put styled statement is used with an expression, the expression may
itself contain literal XPress Tags constructs. For example, the prototype fragment

«put styled “The book was called <ct:Italic>Ulysses”», and Brian loved it.

would result in the text

The book was called Ulysses, and Brian loved it.

being placed into the formatted record, even though the prototype writer made
an error and forgot the closing <ct:> after the word Ulysses. In such cases, the
scope of the italics command ends when its prototype statement does, and the lit-
eral text following it does not appear in italics.

Advanced Prototypes Using Multiple fields Statements

InData User’s Guide 143

In general, when InData is importing text containing XPress Tags constructs, the
base paragraph and character formats of the text are set to those of the corre-
sponding prototype statement (via either a put styled statement or a normal field
placeholder if defaultisstyled is set to true) until an XPress Tags construct changes
them. After the tagged text is imported, all formats are restored.

The only limitations on the XPress Tags language are that style sheet definitions
<Define Paragraph Style:...> and <Define Character Style...>, color table definitions
<Color Table:...> and the hyphenation-related tags are ignored. See the QuarkX-
Press documentation for a full description of XPress Tags.

More Complex put styled Statements
The general format of the put statement is the following:

«put [how] value»

where how may be omitted altogether to simply insert the specifed value into the
formatted record or may consist of one of the keywords styled, unstyled and non-
styled, optionally followed by quoted or unquoted. When keywords are omitted, the
put statement defaults to put unstyled unquoted when defaultisstyled is set to false,
and to put styled quoted when defaultisstyled is set to true (and in both cases the
put operator itself is optional).

The first set of keywords control whether the imported value is interpreted as
XPress Tags-styled text (styled), as literal text where any XPress Tags constructs
are inserted as is (unstyled), or as text containing XPress Tags which are to be
ignored (nonstyled). The quoted and unquoted keywords control whether quota-
tion mark and double hyphen-to-em dash conversion is performed or not.

Here are some examples (look closely at the double quotation marks):

EXAMPLE RESULT
«a» <ct:Italic>This<ct:> ain’t--what "I"

<ct:Bold>mean<ct:>.
«put styled a» This ain’t—what “I” mean.
«put styled unquoted a» This ain’t--what "I" mean.
«put unstyled a» <ct:Italic>This<ct:> ain’t--what "I" <ct:Bold> mean<ct:>.
«put unstyled quoted a» <ct:Italic>This<ct:> ain’t—what “I” <ct:Bold>mean<ct:>.
«put nonstyled a» This ain’t--what "I" mean.
«put nonstyled quoted a» This ain’t—what “I” mean.

Note that you will often need to insert paragraph-level tags concatenated with
the return global constant in order to have those settings applied to the import-
ed text. For example, only the prototype form on the right will produce the desired
space before paragraph setting in the formatted text:

InDesign Tags Support Chapter 10:

144 InData User’s Guide

INCORRECT CORRECT
«put styled “<psb:6>”¶ «put styled "<psb:6>" & return¶

Inserting an Entire File of Text
The put statement may also be used to insert the contents of a text file into the
formatted document, as in this example:

«if fileexists("Prelim.TXT")¶
«put styled filecontents("Prelim.TXT")¶
«endif¶

The fileexists function determines whether the specified file exists or not, and the
filecontents function returns the contents of the specified file. Either one of them
can also take an absolute or relative pathname as its argument. Such paths are
limited to 255 characters.

Note that fileexists is also useful with the set filename of picture prototype state-
ment to determine if a given picture file is present before trying to import it (in
other words, it obeys the picturefolders specification).

Advanced Prototypes Inesign Tags Support

InData User’s Guide 145

146 InData User’s Guide

11
Hints for Debugging Prototypes

In this chapter, we discuss several strategies for developing prototypes and find-
ing and eliminiating errors within them. We present this advice in the form of
several suggestions concerning prototype building.

Test with a Few Sample Records First
Developing and testing complex prototypes is an inherently iterative process.
Start your testing by creating or importing a few sample records into a separate
text box on the document’s pasteboard. If you place the prototype in a text box on
the pasteboard as well, then you can easily test it by importing the records from
the pasteboard into the main text box on page 1. If you detect a problem, you can
quickly modify the prototype and reimport from the pasteboard over the existing
records.

It is important that the sample records that you select or generate include all of
the features and variations that you expect to see in the actual imported data. Be
sure to include sample records that test various boundary conditions: empty
fields and/or records, very large fields, and so on.

Build up the Prototype Gradually
InData wizards can sometimes type in a 50-line prototype and have everything
work correctly the very first time. However, the rest of us will be more efficient if
we build up the complexity of the prototype gradually.

It is often useful to start by establishing the basic logic of the prototype, especially
when this is complicated, using simple literal text or single fields as placeholders
for the more complex importing to come, as in the following example:

«if very complex condition»it is true«else»it is false«endif»

When the condition is working properly, the literal text can be replaced by the
desired import fields and expressions.

InData User’s Guide 147

During the development and debugging process, text color and paragraph space
after settings can be used very effectively to isolate problems within complex pro-
totypes. Consider this prototype with its quite complex nested if statements:

«fields mcode, name, scode, desc, retail,upart, c_num, c_cost, num, cost, m_num,
m_cost, smping, tech_num, tech_cost, status, category, desc2, desc3, unit¶

«if prev name<>name¶
«put name marked "A"»¶
«endif¶

«if pageinfo(1) mod 2 <> 1¶

«if length(desc)<=36» «if c_cost»«c_cost»«else»Call«endif» «upart»

«desc» «if smping»«smping»«else if t_num»«t_num»«else»Call«endif»
«retail»¶

«else» «if c_cost»«c_cost»«else»Call«endif» «upart»

«desc2» «if smping»«smping»«else if c_num»«c_num»

«else»Call«endif» «retail»¬

«desc3»¶
«endif»¶

«else¶

«if length(desc)<=36»«upart» «desc» «if smping»«smping»

«else if c_num»«c_num»«else»Call«endif» «retail»
«if c_cost»«c_cost»«else»Call«endif»¶

«else»«upart» «desc2» «if smping»«smping»«else if
c_num»«c_num»«else»Call«endif» «retail» «if
c_cost»«c_cost»«else»Call«endif»¬

«desc3»¶
«endif¶

«endif¶

We’ve used underlining and font variations in lieu of different text colors to high-
light the structure of this prototype, and have added extra space after the para-
graphs containing the outermost if statement in the body of the prototype.

This sort of approach has two main advantages:

◆ It makes the structure of the prototype clearer, which in turn makes it easi-
er to debug and to modify it.

◆ It color-codes the incoming text, so that you can see at a glance which section
of the prototype formatted any given piece of data.

»

»»
»»

»»
»

»
»

»
»»»

»»

Build up the Prototype Gradually Chapter 11:

148 InData User’s Guide

Use Multiple Text Frames for the Prototype
Prototypes like the preceding also benefit from placement within a series of
linked pasteboard text frames rather than just a single one. When your prototype
contains a lot of variable and property setting statements and initialization and
other preliminary statements, placing them within their own text box and end-
ing the final statement in this section with a new box character will make the
prototype much more readable.

Sometimes, using even more text frames are useful. For example, here is the way
we could format the column wrapping prototype we examined in Chapter 10
(we’ve truncated a couple of text frames):

We have separated this
prototype into a prolog

section, an initialization
section, loops for each of

the columns to be created,

and the final section of the
outermost repeat loop,

each in its own text box.

(The illustration cuts off the
text frames for the loops
for columns 2 and 3 and

the final part of the
prototype.)

Hints for Debugging Prototypes Use Multiple Text Frames for the Prototype

InData User’s Guide 149

Make Sure the Data is OK
Sometimes it is the data rather than the prototype which is faulty. The Dump 50
Fields document in the Samples folder can be useful for debugging data files. It will
display the contents of up to 50 fields in a data file in an easy to view and under-
stand way. It can help in cases where it is not clear whether a problem is with the
prototype or with the data.

The output produced by the prototype is shown below:

Record number 1
field 1 is >>Crashaw<<
field 2 is >>Richard<<
field 3 is >>Mr.<<
field 4 is >>Agape Books<<
field 5 is >>928 St. Teresa Terrace<<
field 7 is >>Iconia<<
field 8 is >>NM<<
field 9 is >>72637<<

Record number 2
field 1 is >>Greville<<
field 2 is >>Fulke<<
field 3 is >>Mr.<<
field 4 is >>The Golden Trellis<<
field 5 is >> 876 Caelica Lane<<
field 6 is >>Floor 17<<
field 7 is >>Loredo<<
field 8 is >>TX<<
field 9 is >>56293<<

The prototype prints some special characters—>> and <<—before and after the
each field in order to make leading and trailing spaces visible.

Downplaying Prototype Statements
The Spice Catalog document in the Samples folder illustrates a technique which
is useful when the prototype is so complex that it threatens to overwhelm the
fundamental structure of the formatted result: tabs are overrun, lines wrap, and
so on. In these cases, it’s hard to know if things are being formatted properly
because so much of the prototype text will not appear in the final document (e.g.,
conditionals). In such cases, making the type size of these extra elements very
small—6 or 7 points, or even 3 points for radical cases—can go a long way toward
clarifying the structure and look of the prototype:

Make Sure the Data is OK Chapter 11:

150 InData User’s Guide

«fields spice,subtype,type1,type2,type3,type4,description¶
«if recordnumber(true)=1 or (description is empty and prev description <> empty)»¶

FULL POUND HALF POUND 2 OUNCES 1 OUNCE

«endif ¶

«if description is not empty¶
«spice», «subtype» $ «type1» $ «type2» $ «type3» $ «type4»
«description»¶
«else¶
«spice», «subtype» $ «type1» $ «type2» $ «type3» $ «type4»¶
«endif¶

Here, the situation could be more drastic, but we’ve made the first conditional
statement much smaller than the rest of the prototype so that we can see the
overall layout more easily.

This prototype also includes an example of a fairly complex conditional in its first
if statement, where it decides whether or not to include the package size header
line or not. It does so only for the very first record (recordnumber(true)=1) and
when the description field for the current record is empty but wasn’t empty in the
previous record. (The descriptive text is only present in the last variant of each
spice, so when we see the above condition, we know we’re formatting a new spice.)

Here are some sample formatted records:

FULL POUND HALF POUND 2 OUNCES 1 OUNCE
Allspice, whole $ 7.90 $ 3.98 $ 1.99 $.79
Allspice, ground $ 8.90 $ 4.49 $ 2.29 $.89

All of our allspice is from Jamaica, the source for the most flavorful in
the world. Allspice is heavily used in Caribbean cooking and in Polish cooking, and
it is a popular choice for many baked goods.

FULL POUND HALF POUND 2 OUNCES 1 OUNCE
Pepper, Black,whole $ 7.90 $ 3.98 $ 1.99 $.85
Pepper, Black, ground $ 6.90 $ 3.49 $ 1.79 $.69
Pepper, Cayenne, ground $ 9.90 $ 4.98 $ 2.49 $.99
Pepper, Green,whole $ 20.50 $ 10.75 $ 5.95 $ 2.25
Pepper, White, whole $ 8.90 $ 4.49 $ 2.29 $.89

Our black, green and white pepper are different varieties of the same plant. The
white and black are Tellicherry variety while the green is from Mysore, India. Don't
confuse cayenne with the other peppers! Ours is rated at 40,000 Skovel heat units.

Hints for Debugging Prototypes Downplaying Prototype Statements

InData User’s Guide 151

152 InData User’s Guide

12
Automating Document Building

On Macintosh systems, InData supports AppleEvent scripting for automating
document building via the AppleScript scripting language. Under Windows,
scripting is done with the Windows Automation facility, using VBScript, JScript,
Visual Basic or any other supported language.

The first section of this chapter covers the general principles behind InData
scripting, and later sections describe the mechanics of controlling InDesign and
InData from a script on each platform.

This chapter assumes some very basic familiarity with scripting, on your plat-
form, such as why it’s useful and how it works at some very high level.

Conceptual Overview
The concepts behind InData automation are simple and easily stated: with InDa-
ta, you interactively name stories (and optionally substories, which are selec-
tions within a named story) within the target InDesign document. Once you’ve
opened a document with named stories, you send InDesign an InData import data
event to import a given data file, using a specified named prototype story, into a
given named target story (and optionally substory) in that document. Note that
you must use distinct prototype and target stories when using InData automa-
tion; you cannot place your prototype within the target story. You may optionally
specify a range of records to import.

InData returns the number of records actually imported in its reply, if the import
is successful. Using this return value in your invoking script, you can compute
exactly which records were imported, based on the starting record you specified
in the original request.

If InData encounters a fatal error (for example, a given prototype named story
wasn’t found in the current document, or no document is open for an import), it
returns a descriptive error string in its reply in such a way that the scripting
engine will trap to an error handler with the error description available. You
can—and probably always should—use the appropriate language constructs to
trap these fatal errors and deal with them yourself (for example, try under Apple-
Script).

InData User’s Guide 153

For example, the general steps for automated data importing with InData into
an InDesign document on the Macintosh using AppleScript are as follows:

1M Create a document containing the desired layout and InData prototype. Assign
story names to the text boxes containing the prototype and into which you want
to place the formatted records. Define and assign names to substories if appro-
priate.

2M Open the resulting document in InDesign using the InDesign open document
AppleEvent.

3M Perform one or more imports into this document using InData‘s import data
AppleEvent, making sure that InDesign is the frontmost application.

4M Save the document using InDesign’s save document AppleEvent.

5M Close the document using InDesign’s close document AppleEvent.

On a Windows system, the general steps for automated data importing with
InData into an InDesign document using Visual Basic are as follows:

1W Create a document containing the desired layout and InData prototype. Assign
story names to the text boxes containing the prototype and into which you want
to place the formatted records. Define and assign names to substories if appro-
priate.

2W Open the resulting document in InDesign using the InDesign Open method.

3W Perform one or more imports into this document using InData‘s ImportFromFile
method, making sure that InDesign is the frontmost application.

4W Save the document using InDesign’s SaveAs method.

5W Close the document using InDesign’s Close method.

Naming Stories
Before you can do any automated document building, you must first build a nor-
mal InData template document (either a real InDesign template or a normal
InDesign document), and name at least two stories in the document: a prototype
story and a target story for data importing. Note that InData makes no distinc-
tion between prototype and target stories in the naming process—both types are
just ordinary named stories.

You can name as many stories as you like, if you need multiple sets of prototype
and target stories. You will use substories if you need to import into different por-
tions of the same target story (discussed in the next subsection).

Naming Stories Chapter 12:

154 InData User’s Guide

You name stories with the InData=>Name Story... menu item, which is enabled
only when you have a text frame selected with the content tool, and when you’re
viewing ordinary document pages, not master pages. The Name Story... menu
item will be checked if the current story already has a name, and you can change
or remove the name, again using the Name Story... dialog:

The Name of story field is used to assign or change the name of the current story,
and the Delete Name button may be used to remove the name from the current
story.

Story names are case-sensitive and must be unique within a given document.

Naming Substories
InData supports the naming of substories: named text selections within a story.
This facility allows you to aim an InData import at a specific subsection of a
named target story. This is a useful feature when you are building a complex doc-
ument out of many pieces, some of which reside in the same text flow as others.
Named substories retain their identity (and name) even after the import is fin-
ished, so you can rename them or even re-import over an already-imported sub-
story. (However, as is true in general, InData won’t delete any extra pages if the
newly-imported data is shorter than the previously-imported data).

You name substories by selecting some text within a named story, and then
selecting the InData=>Name Substory... menu item. This resulting dialog is
almost identical to the Name Story... dialog, and it functions the same way for
renaming and deletion. Substory names must be unique within a story, and are
also case-sensitive.

Named substories use InDesign hidden text enclosing the selected text, so you
must be careful to avoid accidentally deleting the substory names when editing
your template (unless you’re deleting the whole substory intentionally).

Finding Stories and Substories by Name
The InData=>Find Story/Substory… menu item (which is enabled only when you
have a document open and are in content tool mode) allows you to search for a
given story (and optionally substory) by name. If there is a story selected and it
has a name, it is initially placed in the Find Story field, to make it easy to find
substories without remembering the exact name of the current story.

If you don’t want to find a substory, leave the and Substory name field empty.

Automating Document Building Naming Stories

InData User’s Guide 155

Building Complex Multi-Part Documents
When building complex multi-part documents with InData automation, you’ll
need to set up your template document carefully. In particular, if you need to per-
form multiple imports of unknown length into multiple target stories in a sin-
gle document, make sure that when you create each target story, you do so by
dragging a new master page with an automatic text chain on it (the first frame
of which you will eventually name as your target story).

Using InData with AppleScript (Macintosh)
The InData import data function, when inspected with the AppleScript Editor’s
Open Dictionary... command (select the InData.pln plug-in file when prompted), is
quite simple:

import data from file: Import (and format) a raw data file into a target story (and
optionally sub-story) using a prototype story.

import data from file alias
into story string
[substory string]
using prototype story string
[starting with record integer]
[ending with record integer]

Result: integer

Thus, InData adds one new scripting command to InDesign: import data from file.
Given a file, a target story name, an optional target substory name, a prototype
story name, and optional starting and ending record numbers, InData does the
import and returns the number of records imported.

The given file alias may also be a full pathname string (because of the built-in
AppleScript conversion from pathname to alias), while each of the target story,
optional substory, and prototype story names is just a string containing the name
of the story or substory in question. Note that an empty substory name means to
insert text at the end of the target story (regardless of whether there are any
defined substories within the specified target story).

For InData to work correctly, you should always give an activate command before
doing any import data from file commands. In other words, your script should
always be of the form:

tell application "InDesign 2.0" Use the appropriate version number!
activate
import data from file ...
import data from file ...

end tell

Otherwise, if InData finishes an import while InDesign is in the background (is
not the frontmost application), it will hang until you manually bring InDesign to
the front.

Using InData with AppleScript (Macintosh) Chapter 12:

156 InData User’s Guide

Note that you can use the AppleScript statement:

tell me to activate

at any point to bring the script editor (or the script itself, if it’s running as an
application or droplet) back to the foreground.

An Example Script
The AppleScript compiled script file BuildDemo in the AppleScript subfolder of the
Scripting Examples folder illustrates various ways you can import data with InDa-
ta from AppleScript scripts. To see it work, double-click the script file and then
press the Run button in the resulting Script Editor window. This script illustrates
importing records from several sources using multiple raw data files, prototype
stories and target stories and substories.

Importing Large Data Files in Batches
The script file MailMergeDemo in the Scripting Examples folder illustrates one
method for processing very large data sets in batches that InDesign can handle.
Here are the key parts of this script to which we’ve added additional annotations:

--AppleScript MailMergeDemo, by Shane Stanley
set complexityFactor to 10
-- complexityFactor is a rough figure related to how long it takes to print each page,
-- and is used to set the timeout for printing. Adjust it (upwards) if you get
-- timeout errors when printing.
set templateDoc to (choose file with prompt "Loacte the InData template." of type {"InDd"})
set dataDoc to (choose file with prompt "Where is the data file?" of type {"TEXT"})
-- prompt for batch size and saving preferences
set batchInfo to (display dialog ¬

"How many in a batch? Do you want to save each batch …?" buttons ¬
{"Cancel", "Print", "Save"} default button "Save" default answer "50")

try
-- save batch size, catching error for bad input
set batchSize to (text returned of batchInfo) as integer

on error
display dialog "Illegal entry: … must be a whole number." buttons {"OK"} ¬

default button "OK"
error number -128

end try

-- save batch size and do other initialization
copy batchSize to recsImp
set batchDo to button returned of batchInfo
set firstRec to 1

tell application "InDesign 2.0"
activate
-- loop over batches as long as batches are successfully imported
-- loop will end on any error or when an imported batch is shorter than
-- the specified batch size (hopefully, the last batch)

Automating Document Building Using InData with AppleScript (Macintosh)

InData User’s Guide 157

repeat while recsImp = batchSize
-- set the lastRec variable to the final record in this batch
set lastRec to firstRec + batchSize - 1
open templateDoc
import data from file (dataDoc as text) ¬

using prototype story "proto 1" into story "story 1" starting ¬
with record firstRec ending with record lastRec

--save the value returned by the import data operation
set recsImp to result
if (recsImp as integer) > 0 then

--import succeeded; reset lastRec just in case to reflect
--actual number of imported records
set lastRec to firstRec + (recsImp as integer) - 1
--save or print document if user requested it
if batchDo = "Save" then

save document 1 in file ((templateDoc as text) & ¬
" (" & (firstRec as text) & "-" & (lastRec as text) & ")")

else
with timeout of (120 + ((recsImp as integer) * ¬

(complexityFactor))) seconds
print document 1

end timeout
end if
close document 1 saving no
--reset firstRec variable to the next record to be imported
set firstRec to lastRec + 1

else
-- import failed so close document
close document 1 saving no

end if
end repeat

end tell

Using InData with Windows Automation (Windows)
The automation process under Windows is conceptually similar to that just
described on the Macintosh. The key call is to the method (function) InDataImport-
FromFile, which has the following general syntax:

long InDataImportFromFile (
[in] VARIANT fileName, File containing data to import.
[in] BSTR prototype StoryName, Story holding the prototype.
[in] BSTR targetStoryName, Place imported records in this story.
[optional, in] BSTR targetSubStoryName, ... and substory (if specified).
[optional, in] long startingRecordNumber, Specify optional starting and/or
[optional, in] long endingRecordNumber; ... ending record numbers.

Here is a simple Visual Basic code snippet which calls this method:

Private Sub Command1_Click()
Set myInDesign = GetObject (“”, “InDesign.Application”)
myInDesign.Activate
myInDesign.Open (“c:\doc\mydoc.indd”)

Using InData with AppleScript (Macintosh) Chapter 12:

158 InData User’s Guide

On Error GoTo Myerrorhandler

' count is the number of records processed
count = myInDesign.InDataImportFromFile (“c:\doc\mydata.txt”,“proto_box,“target_box”)

Exit Sub
Myerrorhandler:

MsgBox (“InData: “ & Err.Description)
End Sub

The final portion of this code excerpt defines a simple error handler.

An Example Script
The Visual Basic project file, BuildDemo.vbp, in the Visual Basic subfolder of the
Scripting Examples folder, illustrates various ways you can import data with InDa-
ta from Visual Basic scripts. To see it work, double-click the project file to open it,
and then run it by selecting Run=>Start from the menu (or pressing F5).

Once you’ve started running the project, the following simple form will appear:

Click the button to start the demonstration. This script illustrates importing
records from several sources using multiple raw data files, prototype stories and
target stories and substories.

Note that the code is attached to the button on the form, and the form itself is
stored in the file BuildDemo.frm. Within the Visual Basic editor, you can view the
code by selecting View=>Code from the menu if it is not initially visible.

Automating Document Building Using InData with AppleScript (Macintosh)

13
InData Reference

This chapter serves as a reference to the InData menu selections, dialogs, and
prototype language. It opens with a table of keyboard equivalents for various spe-
cial characters useful to InData and InDesign users.

Entering Special Characters
CHAR. PURPOSE KEYSTROKE
¶ End current line and start new para. Return

¬ New line: force a line break, but don’t Shift-Return
start new para. (aka “hard return”).

v New column: force a column break. Enter (on numeric
keypad)

New (or next) frame: force text into the Shift-Enter (on numeric
next text frame in this text flow. keypad)

A Page number: insert number of Opt-Command-N (Mac)
current page here. Ctrl-Alt-N (Win)

« Left chevron (guillemet): begin InData Option-\ (Mac)
prototype element. Alt-0171 (Win)

» Right chevron (guillemet): end InData Shift-Option-\ (Mac)
prototype element. Alt-0187 (Win)

Tab: move to the next tab stop (displays as Tab key
a blue right chevron).

!= Not equals sign. Option-= (Mac)
Alt-= (Win)

>=, <= Greater/less than or equals signs. Option->, < (Mac)
Alt->, < (Win)

»

InData User’s Guide 161

The InData Menu
This section documents each of the items on the InData menu.

Import from File…
Import data from an external data file. A file selection dialog will
appear, allowing you to specify the location of the data file.

Import from Clipboard…
Import data records currently on the system clipboard. This
option is disabled if there is no text on the clipboard.

Import from Pasteboard…
Import data records from a unique text story (composed of one or
more text frames) completely on the pasteboard of the current
spread. (A text story previously designated as the prototype story
may also be present on the pasteboard when this option is cho-
sen, without confusion.)

All of the Import… selections are disabled unless a target text flow has been des-
ignated with an insertion point or text selection (which implies the content tool
is selected).

Make Header/Footer
Designate the currently selected text—which should be in a mas-
ter page text frame that is not part of the main document text
flow—as a mark reference. The resulting dialog will allow you to
specify the corresponding mark name and other characteristics
of this reference.

Update Headers/Footers…
Update previously generated headers and footers to reflect minor
editing changes made to the imported text. The insertion point
must be in the text flow containing the already-imported data.

Use Story as Prototype
Designate the currently selected text frame as the prototype. Any
subsequent designation of a different story (including the main
text flow) will supercede the currently designated prototype.

Name Story… Assign a name to a text flow within the document.

Name Substory…
Assign a name to a selection within a named story.

Find Story/Substory…
Locate a specified story and possibly substory within the current
InDesign document.

The InData Menu Chapter 13:

162 InData User’s Guide

Preferences View or alter InData preferences (its submenu is described
below). If selected while a document is open, preferences apply to
that document alone. If selected while no document is open, glob-
al preferences are shown or set.

About… Display InData version, serial number, personalization data, and
product credits.

InData Preferences Submenu
Data… Open the Data Preferences dialog, which allows you to specify

preferences for the format of the data records.

Range… Open the Range Preferences dialog, where you can specify pref-
erences for the starting and ending records to import.

View… Open the View Preferences dialog, in which you can specify pref-
erences for how often (or whether) InData should update the
screen while importing records.

General… Open the General Preferences dialog, where you can specify
preferences for some InData picture handling and importing
auto-start behavior (among other things).

InData Control Panel Buttons
Data… Open the Data Preferences dialog, where you can specify the

characteristics of the data records. (Enabled only before import-
ing begins.)

Range… Open the Range Preferences dialog, where you can specify the
starting and ending records to import. (Enabled only before
importing begins.)

View… Open the View Preferences dialog, where you can specify how
often InData updates the document window during data import-
ing. (Enabled only before importing begins.)

Start Begin data importing. This button changes to Pause once import-
ing begins, and it may then be used to temporarily halt the
import process.

Cancel Dismiss InData before starting the import operation. After start-
ing, this button changes to Stop, which halts data importing
immediately.

Show Immediately update the document view. (Disabled if you’ve cho-
sen the Show document changes every __ records view option.)

InData Reference InData Control Panel Buttons

InData User’s Guide 163

Data Preferences Panel
Basic format Pop-up Menu
Comma-delimited

Fields are separated by commas; all other settings as for tab-
delimited below.

Tab-delimited InData recommended format: Fields are separated by tabs, sub-
fields (from repeating/multivalued fields) are separated by the
ASCII “group separator” character (29), and records are separated
by carriage returns. Quoted fields start and end with double quo-
tation marks; quotation marks within quoted fields are doubled.

Microsoft Word™ merge comma-delimited
Same as comma-delimited except that the first record is assumed
to be a header record and is automatically skipped during
import.

Microsoft Works™ tab-delimited
Same as tab-delimited except that the first record is assumed to
be a header record and is automatically skipped during import.

Custom Any format differing from the four standard formats described
above.

Other Format Definition Fields
All field values may be set either to a literal ASCII character, to a 2- or 3-digit ASCII
code number, or to a blank (empty); the latter means that the corresponding func-
tion is disabled.

Field delimiter Character separating data fields (defaults to comma or tab).

Subfield delimiter
Character separating subfields in repeating records (usually
data from FileMaker). It defaults to the group separator: ASCII 29.

Record delimiter
Character separating records in the data file (defaults to carriage
return).

Quote character
Character surrounding fields containing embedded field, sub-
field, or record delimiters (defaults to straight double quotation
mark).

First record is header
If checked, ignore the first record in the data file automatically

Data Preferences Dialog Chapter 13:

164 InData User’s Guide

(independently of the Range Preferences). The default is
unchecked.

FoxBase/FoxPro-style quoting (not doubled)
Prevents adjacent double quotes ("") within fields from being
interpreted as a single double quote (").

Other Fields
These field values may be set to Return, meaning replace the character by a para-
graph mark (carriage return), Shift-Return, meaning replace the character by the
new line character which forces a line break (Shift-Return), Space (the space
character), or Nothing, meaning discard the character while importing.

Carriage return in data becomes
Translate ASCII carriage returns to this character; the default is
the paragraph mark (Return).

Vertical tab in data becomes
Translate vertical tabs (ASCII 11) to this character; the default is
the new line character (Shift-Return).

Character set
Specify the character set for imported data: Windows, Macintosh
or Unicode. InData autodetects the UTF-8 and UCS-2BE/LE
encodings when Unicode is selected.

View Preferences Panel
Hide document window

Show absolutely no window updates during the entire import
operation. This is the fastest import mode, by far.

Don’t show document changes
Leave the document window visible but mostly unchanging dur-
ing importing, and update it only after importing all records.
(Changes may show up anyway, when importing pictures, due to
InDesign machinations.)

Show document changes every __ records
Update the document window after importing each specified
number of records (the default of 10 is pre-entered into the field).

Find Story/Substory Dialog
The two fields in this dialog allow you to specify the story and optionally substo-
ry for which you want to search. When the insertion point or selection is within a
named story, then that field will set accordingly when this dialog opens.

InData Reference Data Preferences Dialog

InData User’s Guide 165

General Preferences Panel
Default picture position

Where and how imported pictures should be placed within their
picture frames. Its pop-up menu options are:

Top left: Place the picture’s upper left corner in the upper left cor-
ner of the picture frame.

Center: Center the picture within the picture frame.

Center, Size to Fit: Scale the picture to fit into the picture frame
exactly.

Center, Size to Fit, w/o Distortion: Scale the picture to fit the pic-
ture frame, maintaining its aspect ratio (original proportions),
and then center it within the picture frame.

Size Frame to Picture: Shrink the anchored picture frame to fit
its contents (once they are imported), obeying any scaling and
margin picture frame properties and ignoring any offset picture
frame properties.

Size to Fit Horizontally, then Size Frame Vertically to Picture:
Size the picture itself in its anchored picture frame to fit hori-
zontally (i.e., to fill the frame in the “x” direction) once the picture
is imported, sets the picture’s y scale to match its x scale (as
determined above by making it fit horizontally), and then shrink
the anchored picture frame itself vertically to make it fit the con-
tained picture.

Start automatically after source selection
If checked, start importing immediately as soon as the location
of the data is known (i.e., don’t wait until the Start button is
pushed).

Keep importing after missing pictures
If checked, continue importing records despite missing picture
files (by default, InData halts when it can’t find a requested pic-
ture file).

Don’t automatically update headers/footers
Controls whether headers and footers are updated automatical-
ly at the conclusion of an import operation. By default it is
unchecked.

General Preferences Dialog Chapter 13:

166 InData User’s Guide

I’m an expert user (suppress warnings)
If checked, then various warning messages that occur when the
imported data overflows its text chain are not displayed. It is
unchecked by default.

Maximum length of variables
Controls the maximum number of characters that you can place
into a variable with InData’s put prototype statement (in mul-
tiples of 1024 bytes). You should not normally need a value out-
side of the range of 2 to 8 for this setting.

Make Header/Footer Dialog
Make reference to first/last

Whether the first or last occurrence of the marked text on the
page or spread should be placed in the header/footer.

text marked ____
Mark name of the desired field or expression as defined in a put
… marked "x" statement in the prototype (the same x should be
filled in here).

on the current page/spread
Whether the first/last setting refers to the current page or to the
current spread.

Limit initial search for the first occurrence of marked text
Specifies a range of lines in which the first marked text must be
found in order for it to be used in the header or footer. By default,
marked text found anywhere on the page/spread will be used.

Reference text marks from previous pages
If checked, use the most recent marked text from previous pages,
if none falls on this page/spread, or if none is found a limited ini-
tial search.

appending _____
If marked text from a previous spread is used on this page,
append the indicated string to it. Formatting with any InDesign
Tags character style tags is supported within this string.

Name Story and Name Substory Dialogs
These dialogs both have a single field into which the desired name may be typed.
Their Delete Name button may be used to remove the current name from any
current story or substory.

InData Reference Make Header/Footer Dialog

InData User’s Guide 167

Range Preferences Panel
Import record ____

First record to import. Numbers begin at 1.

through __ Last record to import. Can be either a record number, or one of
the keywords end, all, last, final or •, all of which mean to import
up through the end of the data.

InData Prototype Elements
In the descriptions that follow, the following symbols and typographic conven-
tions are used in syntax descriptions:

boldface InData command or keyword to be typed exactly as shown.

italic A parameter: something you must fill in when you use the com-
mand or operation. For example, field means you must enter the
name of a field.

[] Portions of statements or expressions in italicized brackets are
optional.

a|b Select one of the choices separated by the vertical bar.

In general, all statement arguments may be constants or expressions. For exam-
ple, the first two arguments used by character—the starting and ending charac-
ter indices—may be:

numbers:
char 1 to 3 of a

an expression which evaluates to a number:
char count to count+1 of a

a function which returns a number:
char 1 to length(a) of a

or combinations of these:
char count+1 to length(a)-count of a

Similarly, the third argument to character—the expression to extract characters
from—may be:

a literal string:
char 1 to 3 of "hello"

a field name:
char 10 to length(corp) of corp

or an arbitrarily complex expression:
char 1 to 3 of word 1 to 2 of subfield 8 of previous phone

Range Preferences Dialog Chapter 13:

168 InData User’s Guide

Prototype Statements

ask
SYNTAX: «ask prompt-expression [with answer-expression] »
USE: User querying during importing. The prompt will appear in a

dialog containing an input field and the buttons OK, Cancel, and
Stop. The answer is used to pre-fill in the input field (i.e., used as
a default). The information entered by the user is placed into the
variable it, which may be used later within the prototype. If the
user pressed Cancel, it will be empty. If the user presses Stop, the
whole InData import will be stopped immediately.

EXAMPLE: «ask "Enter first name:"»«it»
«ask "Enter job title:" with "Engineer"»«it»

exit
SYNTAX: «exit»
USE: Immediately stops data importing.
EXAMPLE: «if lname > "M"»«exit»«endif¶

exit repeat
SYNTAX: «exit repeat»
USE: Immediately exit from the innermost repeat loop.
EXAMPLE: «repeat iv=1 to length(a)»«if char iv of a = "_"»

«exit repeat»«]» additional statements «end repeat»

fields
SYNTAX: «fields name1, name2, …, namen»
ALT. FORMS: «columns name1, name2, …, namen»
USE: Used to name the fields in the data records. Fields can be

skipped using 2 or more consecutive commas. Field names may
include letters, number, and the underbar character (_); they
must begin with a letter or underbar. The automatic field names
a to z may not be redefined.

EXAMPLE: «fields last,first,title,phone¶
«columns price, cat_num, descr»

if
SYNTAX: «if condition» statements [«else» statements] «endif»
ALT. FORMS: «[condition» …«]» if … endif

«[condition» … «|» … «]» if … else … endif
«if condition1»…«else if condition2»…«else»…«]» case

USE: Conditionally includes data within imported records. If condition
is true for a record, then the statements will be carried out for
that record. Otherwise, any statements in the else clause will be
carried out. Conditions must evaluate to a boolean (true or false)
value. There can be any number of else if clauses in a chain.

EXAMPLE: «if lname»«lname»«else»«corp»«endif¶

InData Reference InData Prototype Elements

InData User’s Guide 169

next
SYNTAX: «next»
USE: Immediately returns to the beginning of the prototype as if the

end of the prototype had been reached, and starts processing the
next record. Contrast this with the read statement, which reads
the next record but continues processing the prototype.

EXAMPLE: «if balance < 0»«next»«endif¶

next repeat
SYNTAX: «next repeat»
USE: Immediately begins the next repeat loop iteration as if the end of

the repeat loop had been reached.
EXAMPLE: «repeat 5»«if lname Ž "M"»«next repeat»«endif»

additional statements«end repeat»¶

open
SYNTAX: «open filename»
USE: Open a data file from within the prototype, suppressing the

usual input file selection dialog. The given filename can be either
relative to the current document’s folder, or it can specify an
absolute location for the data file.

EXAMPLE: «open "Poole employees"¶
«open "HD80:June Catalog:Parts"¶

put
SYNTAX: «put expression»
ABBREVIATION: «expression»
USE: Inserts the expression (often a field) as text into the formatted

records.
EXAMPLE: «put lname» or «lname»

«put "(415) "» or «"(415) "» or (415)

put into
SYNTAX: «put expression into variable»
USE: Sets the value of the given variable to the results of expression.

Before a variable is set for the first time, it is empty.
EXAMPLE: «if counter is empty»«put 1 into counter»

«else»«put counter+1 into counter»«endif¶

put marked
SYNTAX: «put expression [hidden] marked "mark-name"»
USE: Inserts the expression as text into the formatted records, and

marks it for potential use in a running header or footer. The
mark-name must be a single, case-insensitive character. If hidden
is included, then the resulting text will not be visible in the for-

InData Prototype Elements Chapter 13:

170 InData User’s Guide

matted records, so the put … hidden should normally be placed on
the same line as a related normal field placeholder.

EXAMPLE: «put lastname marked "A"»
«put hidden char 1 of ln marked "L"»«ln»
«put char 1 of ln marked "L"»«put char 2 to length(ln) of ln»

Examples 2 and 3 have an identical effect.

put styled
SYNTAX: «put [styled | unstyled | nonstyled] [[un]quoted] expression»
USE: When the keyword is styled, this statement inserts the result of

expression, processed as XPress Tags styled input, into the for-
matted records (expression is often a field name). The first set of
keywords controls whether the imported expression is interpret-
ed as XPress Tags-styled text (styled), as literal text where any
XPress Tags constructs are inserted as is (unstyled), or as text
containing XPress Tags which are to be scanned but otherwise
ignored (nonstyled). The quoted and unquoted keywords control
whether quotation mark and double hyphen-to-em dash conver-
sion is performed or not.

EXAMPLE: «put styled unquoted book_title»
«put styled “<ct:Bold>” & a & “<ct:>”»

read
SYNTAX: «read»
USE: Immediately reads the next data record and then continues pro-

cessing the prototype after the read statement. Contrast this
with the next statement, which skips the rest of prototype pro-
cessing for the current record.

EXAMPLE: «if continue_flag»«read»«endif¶

repeat
SYNTAX: «repeat count»…«end repeat»

«repeat with var = start [down] to end»…«end repeat»
«repeat while|until condition»…«end repeat»
«repeat forever»…«end repeat»
«repeat»…«end repeat»

USE: Creates a loop within an InData prototype. When a count is given
as repeat’s argument, the loop runs that many iterations unless
an exit repeat statement is encountered. repeat while continues as
long as condition remains true, and repeat until continues until
condition becomes true. repeat with is used to create an ascending
or descending (by including down) indexed loop. repeat forever
repeats continuously and can only be exited by exit repeat or next
repeat. repeat is equivalent to repeat forever.

EXAMPLE: «repeat 1000» loop body«end repeat»
«repeat while dept¤next dept»loop body«end repeat»
«repeat with ind=10 down to 1»loop body«end repeat»

InData Reference InData Prototype Elements

InData User’s Guide 171

set defaultisstyled
SYNTAX: «set defaultisstyled to true-or-false»
USE: Allows you to set whether or not all field placeholders support

XPress Tags formatting on a prototype-wide basis. In other
words, if this variable is set to true, then any field placeholder
becomes equivalent to its put styled version: «a» is equivalent to
«put styled a», for example. The default setting is false.

EXAMPLE: «set defaultisstyled to true¶

set filename of picture
ABBREVIATION: set fn of pic
SYNTAX: «set [the] filename of picture number to path»
USE: Specifies the picture file location as path for the picture frame

indexed by number (starting with 1, counting from the start of
the prototype, ignoring the effect of conditionals). The path
expression is often a fieldname, meaning that the picture file-
name for each record is taken from that field.

EXAMPLE: «set fn of picture 2 to pic2name¶

set itemdelimiter
SYNTAX: «set itemdelimiter to char»
USE: Specifies the character that separates items within an expres-

sion. The default character is a comma.
EXAMPLE: «set itemdelimiter to “/”»
set master
SYNTAX: «set [the] [first]master of this page|spread to mastername»
USE: Assigns a master page/spread to the current page or spread

during importing. When multiple set master statements are
encountered on the same page/spread, the final one takes prece-
dence. When multiple set firstmaster statements appear on a
page/spread, the first one takes precedence.

EXAMPLE: «set master of this page to “Master A”»

set picturefolders
SYNTAX: «set picturefolders to " list-of-folders"»
USE: Specifies locations for InData to look for picture files in addition

to the location specified in the picture filename (which defaults
to the current folder). The list-of-folders should be separated by
commas. Folder names may be absolute (Data:Pictures: means the
folder Pictures on disk Data) or relative (:Old:Pictures:means the
folder Pictures in the folder Old in the same folder as the current
document). Under Windows, use DOS-style pathnames (e.g.,
C:\Data\Pictures\ and My_Pix\). The terminal colon/slash is required.

EXAMPLE: «set picturefolders to ":Pictures:,Disk 2:Pix:"¶
«set picturefolders to "C:\Pictures\,D:\Pix\,My_Pix\"¶

InData Prototype Elements Chapter 13:

172 InData User’s Guide

set pictureimportcrop
AVAILABILITY: InData 2.0 only.
SYNTAX: «set pictureimportcrop [of picture number] to n»
USE: Specifies the cropping for an imported PDF file page. The value

n runs from 0 to 3. 0 uses the InDesign global default cropping
(as last set in the PDF Import Options dialog); 1 crops to the
media; 2 crops to the page; and 3 crops to the content (bounding
box). Any other value is ignored.

EXAMPLE: «set pictureimportcrop of picture 2 to 2»

set pictureimportpage
AVAILABILITY: InData 2.0 only.
SYNTAX: «set pictureimportpage [of picture number] to n»
USE: Specifies the page of a PDF file to import as a picture. The value

n should be a non-negative integer; invalid values default to 1. A
value of 0 has the special meaning of the InDesign global default:
the page last set in the PDF Import Options dialog.

EXAMPLE: «set pictureimportpage of picture 2 to 10»

set pictureposition
ABBREVIATION: set picpos [of pic]
SYNTAX: «set [the] pictureposition [of picture number] to keyword»
USE: Specifies how a given picture (or all pictures if the of picture

clause is omitted) should be placed within their picture frames.
The keyword must be one of: topleft, center, fit, aspectratiofit, fram-
efit, and fithframev which have the same meanings as the corre-
sponding items on the Default picture position menu in the
General Preferences dialog.

EXAMPLE: «set picpos of picture 1 to center»

set worddelimiters
SYNTAX: «set worddelimiters to chars»
USE: Specifies characters that separate words within expressions. The

defaults are space and all characters in the ASCII character set
below it (line feed, return, tab, etc.).

EXAMPLE: «set worddelimiters to “;, /”»

set wordcharacters
SYNTAX: «set wordcharacters to chars»
USE: Specifies characters that are considered part of words. All other

characters are considered word delimiters.
EXAMPLE: «set wordcharacters to “abcdef”»

InData Reference InData Prototype Elements

InData User’s Guide 173

The set statement also has a number of other options which allow you to speci-
fy various InData dialog settings from within the prototype. They are summa-
rized in the following table.

KEYWORD ARGUMENT EXAMPLE

autostart true/false «set autostart to true»

clipboard true/false «set clipboard to false»

endrecord number «set endrecord to 1000»

fieldquote character «set fieldquote to “'”»
«set fieldquote to ""» disabled

fieldseparator character «set fieldseparator to “,”»
fldsep «set fldsep to “,”»

filetype type «set filetype to “Tab-delimited”»

KEYWORD ARGUMENT EXAMPLE

ignoremissingpictures true/false «set ignoremissingpictures to true»

recordseparator character «set recordseparator to “\”»
recsep «set recsep to "\"»

startrecord number «set startrecord to 100»

subfieldseparator character «set subfieldseparator to “;”»
subfldsep «set subfldsep to “|”»

viewfrequency number «set viewfrequency to 50»
«set viewfrequency to 0»

Expression Operators
The following InData operators may be used in constructing expressions. Each
one is described individually below, including its required and optional argu-
ments.

character
ABBREVIATION: char
SYNTAX: character start [to end] of expression
USE: Used to extract a range of characters from a string. If the to

clause is omitted, then one character is extracted. Character
indices start at 1; any index less than 0 is treated as if it were 1,
and any index greater than the length of expression is treated as
if it were the length of expression. The expressions start and end
must be integer (whole number) character index expressions.
Use the length function for end to extract through the end of a
string. Expressions involving char evaluate to a character string.

EXAMPLE: char 1 to 3 of phone
char length(price)-2 to length(price) of price

Extracts up to 3 characters from the end of the price field.

InData Prototype Elements Chapter 13:

174 InData User’s Guide

chartonum
SYNTAX: chartonum(char)
USE: Returns the ASCII character number of the character given as its

argument as a string.
EXAMPLE: chartonum("A")

dec2frac
SYNTAX: dec2frac(string)
USE: Converts the specified character string to a fraction, returning

the whole number and fractional parts as separate words.
EXAMPLE: dec2frac("1.375")

downcase
SYNTAX: downcase(string)
USE: Converts a character string expression to lowercase.
EXAMPLE: downcase(first & last)

filecontents
SYNTAX: filecontents(path)
USE: Returns the contents of the specified text file as a text string. The

path may be absolute or relative to the current directory and
should be in the proper format for the computing environment
(Macintosh or Windows).

EXAMPLE: filecontents("new.txt")

fileexists
SYNTAX: fileexists(path)
USE: Returns true or false depending on whether the specified file

exists or not (may be imported as a picture or with filecontents
if text). The path may be absolute or relative to the current direc-
tory and should be in the proper format for the computing envi-
ronment (Macintosh or Windows), and is interpreted relative to
the current picture paths.

EXAMPLE: fileexists("new.txt")

fileinfo
SYNTAX: fileinfo(j,n)
USE: Returns information about the current document file (when j is

0) or data file (when j is 1). The information returned depends on
the value of n, 1 returns the base file name; 2 returns the full
pathname.

EXAMPLE: «put fileinfo(1) into fname»

InData Reference InData Prototype Elements

InData User’s Guide 175

frameinfo
SYNTAX: frameinfo(n)
USE: Returns information about the text frame at the current inser-

tion point. The information returned depends on the value of n,
1 returns an emphemeral unique identifier for the current text
frame (only unique for the given document session); 2 returns the
1-based index of the current frame in the text thread on the
current page; 3 returns the 1-based index of the current frame in
the text thread on the current spread.

EXAMPLE: «put frameinfo(1) into frameid»

item
SYNTAX: item start [to end] of expression
USE: Used to extract a range of items from a string, where items are

delimited by commas or the character specified via set itemde-
limiter. If the to clause is omitted, then one item is extracted. Item
indices start at 1; any index less than 0 is treated as if it were 1,
and any index greater than the number of items in expression
is treated as if it were that value. The expressions start and end
must resolve to integers (whole numbers).

EXAMPLE: item 1 to 3 of contract

length
ALT. FORMS: the length of
SYNTAX: length(expression)

the length of expression
USE: Returns the length in characters of the specified expression

(returns 0 if expression is empty/null). The length function
returns an integer value which is Ž 0.

EXAMPLE: «if length(phone) • 7»(415) «endif»«phone»
Adds an area code to phone numbers shorter than 8 characters.

line
SYNTAX: line start [to end] of expression
USE: Used to extract a range of lines—strings separated by carriage

returns—from a string. If the to clause is omitted, then one line
is extracted. Line indices start at 1; any index less than 0 is
treated as if it were 1, and any index greater than the number of
lines in expression is treated as if it were that value. The expres-
sions start and end must be integer (whole number) expressions.

EXAMPLE: line 3 to 6 of comments

InData Prototype Elements Chapter 13:

176 InData User’s Guide

next
SYNTAX: next fieldname
USE: Refers to the contents of the field named fieldname in the next

(upcoming) record.
EXAMPLE: «if dept ¤ next dept»«dept»«endif¶

number
SYNTAX: [the] number of chunks in expression
USE: Returns the number of entities of the specified type in expression.

Chunks must be one of chars, words, lines or items.
EXAMPLE: the number of words in comment

numtochar
SYNTAX: numtochar(integer)
USE: Converts an integer in string form to the corr. ASCII character.
EXAMPLE: numtochar(68)

offset
SYNTAX: offset(pattern, expression)
USE: Searches for the pattern within expression. If it finds it, offset

returns the character number where it starts, or 0 if it’s not
found. The offset function returns an integer value in all cases.

EXAMPLE: «if offset("(",phone) = 0»(«char 1 to 3 of phone») «char 4 to
length(phone) of phone»«else»«phone»«endif¶
Adds parentheses around the area code in a phone number if not present.

pageinfo
SYNTAX: pageinfo(n)
USE: Returns information about the current page at the current inser-

tion point. Which information is returned depends on the value
of n, which ranges from 1 to 5: 1 returns the absolute page
number in document; 2 returns the absolute spread number in
document; 3 returns the relative page number within the current
section of the document; 4 returns the page location within the
current spread (where the left page=1, and the right page=2); 5
returns the name of the currently-applied master spread.

EXAMPLE: «put pageinfo(2) into spreadnum
«if pageinfo(5) = “Master A”» ... «endif»

previous
ABBREVIATION: prev
SYNTAX: prev fieldname
USE: Refers to the contents of the field named fieldname in the pre-

vious record.
EXAMPLE: «if dept <> prev dept»«dept»«endif¶

InData Reference InData Prototype Elements

InData User’s Guide 177

recordnumber
SYNTAX: recordnumber(true-or-false)
USE: Returns the record number of the current record. If its argument

is the keyword false, then it returns the absolute record number
in the data file, regardless of whether any records were skipped
initially. If its argument is the keyword true (or a boolean expres-
sion evaluating to true), it returns the relative record number for
the record, counting the first imported record as record number
1. This function returns an integer value.

EXAMPLE: «if recordnumber(true) mod 10 = 0»¶
«endif¶ Inserts a blank line every ten records.

subfield
ABBREVIATION: sfld
SYNTAX: subfield number of expression
USE: Returns the indexed subfield from the indicated field or expres-

sion; subfield indices start at 1. The expression in number must
be an integer expression denoting the subfield index. Use with
repeating (multivalued) fields. If the specified subfield does not
exist, subfield returns an empty string.

EXAMPLE: «if sfld 2 of item_num is not empty¶
«subfield 1 of quantity»«endif¶

trim
SYNTAX: trim(expr1[,expr2])
USE: Removes any characters in expr2 from the start and end of expr1.

If expr2 is omitted, it defaults to whitespace (spaces and tabs).
EXAMPLE: trim(comment)

trim(comment," !")

word
SYNTAX: word start [to end] of expression
USE: Returns the indicated word(s) from d expression. The expressions

start and end must be integer word indices (which start at 1).
EXAMPLE: «word 2 of lname»

wordcase
SYNTAX: wordcase(string)
USE: Converts a character string expression so that only the first

letter of each word is capitalized.
EXAMPLE: wordcase(title)

upcase
SYNTAX: upcase(string)
USE: Converts a character string expression to uppercase.
EXAMPLE: upcase(exclamation)

InData Prototype Elements Chapter 13:

178 InData User’s Guide

Built-In Constants and Variables
false
SYNTAX: false
USE: Used when a literal negative Boolean value is desired.
EXAMPLE: «if recordnumber(false) mod 10 = 0» …

guillemetleft
SYNTAX: «guillemetleft»
USE: Inserts a literal left chevron mark into the formatted records.
EXAMPLE: «guillemetleft»

guillemetright
SYNTAX: «guillemetright»
USE: Inserts a literal right chevron mark into the formatted records.
EXAMPLE: «guillemetright»

it
SYNTAX: «it»
USE: Variable which holds the value entered by the user in response

to the ask statement.
EXAMPLE: «ask "Enter part number:"»«it»

«if it is not empty»«it»«endif»

return
SYNTAX: return
USE: Inserts an ASCII carriage return into an expression.
EXAMPLE: «line 1 of a & return & line 2 of a»

quote
SYNTAX: quote
USE: Inserts a literal quotation mark into an expression.
EXAMPLE: «a && "said" & quote & b & quote &"."»

tab
SYNTAX: tab
USE: Inserts an ASCII tab into an expression.
EXAMPLE: «a & tab & b»

true
SYNTAX: true
USE: Used when a literal positive Boolean value is desired.
EXAMPLE: «if recordnumber(true) mod 10 = 0» …

InData Reference InData Prototype Elements

InData User’s Guide 179

Integer Operations
The following operators may be used in constructing integer expressions. All con-
nect two integer operands and return an integer. All operators take two argu-
ments, using the syntax i1 op i2, where i1 and i2 are integers or integer expres-
sions, and op is one of the operators listed below (e.g. counter + (a / 2)).

+ addition
– subtraction
* multiplication
/ division: returns an integer, discardingany remainder (e.g. 12 / 5 = 2).
mod modulus operator: the remainder from dividing the left operand by the

right operand. Examples: 14 mod 5 = 4 and 20 mod 3 = 3.

Take care to avoid divide-by-zero errors with / and mod.

Comparison Operations
The following operators may be used in constructing logical (boolean) expressions.
All connect two operands and return a boolean value. All operators take two argu-
ments, using the syntax e1 op e2, where e1 and e2 are expressions, and op is one
of the operators listed below (e.g.: price <= 10, last = "Smith").

Each comparison operator first attempts to compare the two items as numeric
quantities; if it cannot do so (because either is not a well-formed number), then
the two items are compared on a character by character basis as strings (as in
HyperTalk). Comparisons of character strings are performed based on the strings’
relative alphabetical order.

< less than
> greater than
=, is equals
is not, <> not equal (the not equal sign is also equivalent)
>= greater than or equal to (the single greater-than-or-equal sign

is also equivalent).
<= less than or equal to (the single less-than-or-equal sign is also

equivalent).
is empty, = "" is empty (contains no characters)
is not empty is not empty (contains at least one character); note that the

form if fieldname is equivalent to if fieldname is not empty. A not
equal sign followed by two double quotation marks is also
equivalent to is not empty.

is a[n] type Tests whether the first operand is of the data type specified in
type (one of number, logical and integer).

InData Prototype Elements Chapter 13:

180 InData User’s Guide

Logical Operations
and Joins two conditions (boolean expressions) such that the compound

condition is true only if both conditions are true. Example: «if lname is
not empty and fname is not empty»«lname» «fname»«endif¶

or Joins two conditions (boolean expressions) such that the compound
condition is true if either or both conditions are true.
Example: «if lname is "Smith" or lname is "Jones"»«next»«endif¶

Skips records for Smiths and Joneses.

not Logically negates its argument.
Example: «if not comment contains "."»…«endif».

Grouping Operations
() Parentheses may be used to specify the evaluation order for expres-

sions involving more than two logical conditions or arithmetic/string
operations: «if (lname is "Smith" or lname is "Jones") and fname is
"John"»…«endif» or «put (a-b)/c into sum».

InData Technical Information
InData Limitations
In general, the only limitations imposed by InData are those resulting from pri-
mary memory limitations. There are no built-in limits on the number or length
of fields and records nor on the size (length) of a prototype.

InData Memory Usage Under Mac OS 9
InData lets you push InDesign far beyond where most users can take it manu-
ally. For example, a user interactively building a complex document interactive-
ly would give up long before InDesign started taking three minutes to insert a
new page because of inadequate memory allocation, but InData will blindly go
far beyond this limit, if asked. And, InData has no way of directly judging how
much memory you need for a given import, so it can’t complain intelligently when
memory gets “too low.”

The solution is simply put, but harder to achieve: you must allocate adequate
memory for InDesign, using the Finder’s Get Info... dialog, if you want reliable
operation with InData. There’s no magic setting of InDesign’s memory allocation
that’s adequate for all situations, but, luckily, the Finder’s About this Computer...
dialog provides an excellent graphical memory utilization monitor for InDesign
(and any other application). When using InData, keep this memory monitor dia-
log open, and if you see InDesign using all or nearly all its allocated memory dur-
ing or after an InData import, allocate InDesign more memory (if possible) until
there’s some free space available during InData import.

InData Reference InData Technical Information

InData User’s Guide 181

These considerations do not apply to Mac OS X nor to any Windows operating
system which implements virtual memory management.

InData Reserved Words
The following words (identifiers) are reserved as keywords in the InData proto-
type language, and cannot be used for any other purpose (in alphabetical order,
with abbreviations in parentheses):

a, an, and, ask, character (char), columns, contains, div, down, else (|), end, endif
(], fi), exit, fields, forever, hidden, if ([), in, into, is, item, line, marked, mod, next, non-
styled, not, of, once, open, or, previous (prev), put, quoted, read, recordfields, repeat,
set, styled, subfield (sfld), the, then, this, to, unquoted, unstyled, until, while, with,
word.

The following identifiers are reserved as built-in constants, global or local prop-
erty names, and built-in functions in the InData prototype language, and cannot
be used as field names or variable names (in alphabetical order, with abbrevia-
tions in parentheses):

aspectratiofit, autostart, center, chartonum, clipboard, debugterse, debugtree,
dec2frac, defaultisstyled, downcase, empty, endrecord, false, fieldquote,
fieldseparator (fldsep),fieldindex, fieldvalue, filecontents, fileexists, filename
(fn), filequoting, fileinfo, filetype, firstmaster, fit, fithframev, framefit,
guillemetleft, guillemetright, ignoremissingpictures, integer, it, itemdelimiter,
length, logical, master, number, numtochar, offset, page, pageinfo, picture (pic),
picturefolders, pictureimportcrop, pictureimportpage, pictureposition (picpos),
quote, randomfonts, recordnumber, recordseparator (recsep), return,
sequentialfonts, spread, startrecord, subfieldseparator (subfldsep), tab, topleft,
trim, true, upcase, viewfrequency, wordcharacters, worddelimiters.

Additional Prototype Restrictions
The built-in field names—a through z—cannot be reassigned. Thus, the following
fields statement is illegal, because it attempts to reorder the built-in fields:

«fields b,a,d,c,f,e¶

InData statements between chevrons (including the chevron marks or the
chevron mark and the terminating paragraph mark) must be formatted in a sin-
gle character style; changing any aspect of the character style in the middle of
a statement is not allowed, including kerning. Thus, the following prototype state-
ments are all illegal (look closely!):

«if last is empty»
«lname»
«else»
«last¶

InData Technical Information Chapter 13:

182 InData User’s Guide

Processing Very Large Data Files
The practical limits on the number of pages that InDesign can handle within a
single document is in the many hundreds of page range (although InDesign will
need quite a bit of memory). Therefore, if you have a very large number of records
and are placing only a few records per page, you’ll have to process the data file in
sections to avoid exceeding some practical maximum. We recommend keeping
documents to a maximum of a few hundred pages so that they do not become
unwieldy. This is not a hard limit, of course, but only a recommendation, and
depends on the speed and size of your system.

Page Complexity
We recommend keeping the number of linked text frames per page to a mini-
mum, especially if the number of document pages is large, or if you’re importing
graphics along with text.

InData Reference InData Technical Information

InData User’s Guide 183

184 InData User’s Guide

14
Troubleshooting and Error Messages

This chapter discusses some common problems encountered using InData, and
presents solutions to them. It also lists and discusses all of InData’s status and
error messages.

Common Problems and Their Causes
There is no InData menu in the InDesign top-level menu.
This usually means that InData is not installed correctly. InData must be placed
in the Plug-ins sub-folder (or one of its sub-folders), and InDesign (re)started.

I get only one page or one spread of formatted data. The rest of my data disappeared.
(You should have received a warning from InData that the data overflowed.) The
problem is usually that you’re not importing into an automatic text thread, so
InDesign isn’t creating extra pages as needed.

◆ Make sure you have installed the InFlow plug-in along with InData.

◆ Make sure you’re using text frames created on the master pages, not frames
you’ve created manually in the document pages (except in very rare circum-
stances).

◆ Make sure the text frames you’re using from the master page are linked into
the automatic text chain (see chapter 4).

An easy way to test for this problem, before importing, is to place the insertion
point at the end of the prototype, and type Shift-Keypad Enter (the new frame
character) several times. If InDesign doesn’t create at least one new page or
spread when you do this, then you’re not importing into a text frame that’s part
of the automatic text flow.

Incorrect use of the enhanced Keep with Nextand Keep Lines Together paragraph
attributes. If you have used these settings in your prototype, try the following:

◆ Select all of the text in the text frame.

InData User’s Guide 185

◆ Select Style=>Formats… and disable both the Keep with Next and Keep Lines
Together paragraph attributes.

If this procedure corrects your problem, then you have been too enthusiastic in
applying these paragraph attributes, and you’ll need to give InDesign some per-
missible break points in your prototype.

There are extra lines inserted into each record that I don’t want.
This problem is usually caused by one of the following.

◆ There are empty data fields in some records. In this case, the extra lines won’t
be present for all records, just a subset of them. This can be corrected by using
conditional statements for those data fields.

◆ There are paragraph marks left outside of an if statement that should be
inside of it. If you only want a new paragraph to begin if a condition is met
(or not met), then be sure to place the paragraph marker between the if and
the endif statements, where you need it.

◆ A prototype statement is closed with a right chevron and is also followed by
a new paragraph mark or line break—often, the fields statement is the cul-
prit. Either a chevron or a paragraph mark may be used to mark the end of
an InData prototype statement, but not both—when you use both, the para-
graph mark is taken literally and included in the formatted data, giving you
the blank line.

The records of my data are running together.
This is the opposite of the previous problem. This usually is caused by a missing
paragraph mark at the beginning or end of the prototype, or by including such
a mark inside a conditional, when it should be outside.

I want my records to be on separate pages (or frames), but they’re running together.
This is usually caused by a missing new frame or new page character at the end
of the prototype.

All or most of my fields are missing, or are all bunched up in one place.
You’ve probably chosen the wrong basic file format, i.e., comma-separated instead
of tab-separated, or vice versa. Verify that this is the problem by looking at the
data, and use the other format.

One (or more) of my fields is in the wrong place.
It’s very likely that the order of the fields declared in the prototype’s fields state-
ment doesn’t match the order of the fields as exported from your database or
spreadsheet.

One way to verify this would be to temporarily add one line at the start of the pro-
totype for each field, with each field placeholder prefixed literally by its field
name. For example:

Common Problems and Their Causes Chapter 14:

186 InData User’s Guide

«fields partnumber, price, description¶
partnumber: «partnumber»¶
price: «price»¶
description: «description»¶
...

The results of importing your data should make it clear if there’s a mismatch
between your declared field order and the actual data’s field order, based on each
field’s expected and actual contents. E.g., if the result of importing the example
above were

partnumber: 3.25
price: 20222
description: 10 1/2" threaded bolts

you’d know that the partnumber and price fields were probably reversed.

In any case, to solve this problem, either change the order of the exported fields
in the original application and re-export the data, if appropriate, or change the
order of the fields in your prototype’s fields statement to match the actual order
of the data fields.

One or more field names are appearing literally in my output.
You’ve probably forgotten to declare the field name in a fields statement, or have
misspelled a field name, or have selected just a part of the prototype—rather than
just placing the cursor in the prototype, resulting in an insertion point—prior to
importing the data.

Status Messages
As InData does its work, it displays various messages in the status area of its con-
trol panel. This section lists those messages and their meaning, roughly in order
of appearance. (Some of these messages flash by so quickly you’ll never see them
except in particular circumstances, but they’re all listed here for completeness.)

Initializing...
InData is just starting up and initializing itself.

Scanning prototype...
InData is examining the prototype you gave it, and preparing an internal (“exe-
cutable”) version for later use during data import. Structural errors in the pro-
totype are found during this phase of operation, as are errors in fields, open, and
global set statements.

Please select a data file to import.
InData is waiting for you to select a file to import, from its file selection dialog.

Opening file...
InData is opening the data file that you specified.

Troubleshooting and Error Messages Common Problems and Their Causes

InData User’s Guide 187

Initializing for data access...
InData is preparing to import data from the now successfully-opened data file.

Ready to import data from file “___”.
Ready to import data from clipboard.
InData is waiting for you to select any special options in its control panel before
pressing either the Start button to start data importation, or the Cancel button
to abandon this data import immediately (with no side-effects).

Auto-starting...
The auto-start option has been selected in the InData General Preferences dia-
log, or InData has seen an «set autostart to true» statement in the prototype, and
is beginning data importation without waiting for you to press the Start button.

Paused.
InData has temporarily paused data import, after updating the document view
to show its progress to this point. It is waiting for you to press either the Continue
button to go on with the data import from where it left off, or the Stop button to
stop data import immediately.

Skipping initial data from file “___”...
Skipping initial data from clipboard...
InData is skipping any data records before the first record to be imported. Dur-
ing this time, the progress bar is a lighter shade of gray than it is during normal
data importation.

Importing data from file “___”...
Importing data from clipboard...
InData is now importing data from the named file or from the system clipboard.
The dark gray bar below this status message shows the progress InData has
made. The length of this progress bar relative to the total length of the measure
below it shows the current position in the data file relative to the total length of
the data file (if there is no specific end record), or shows the current record num-
ber relative to the end record number (if there is a specific end record).

Waiting for InDesign to update document view...
InData is now waiting for InDesign to compute an updated view of any imported
data. This may take a significant amount of time after a large amount of data was
imported, particularly if you didn’t select view updating during importation.

Waiting for page headers/footers update...
InData is now waiting for its automatic page header/footer update to finish, after
finishing an import employing marked text.

Finishing... or
Cleaning up... or
Cancelling... or
Stopping...
These all mean the same thing—InData is now shutting down—but reflect var-
ious ways in which InData can stop. Respectively, InData is finishing normally,

Status Messages Chapter 14:

188 InData User’s Guide

cleaning up after one or more fatal errors, cancelling before data importation
began (because you pressed the Cancel button), or stopping during data impor-
tation (because you pressed the Stop button).

Finished. or
Failed. or
Cancelled. or
Stopped.
Imported __ records per minute.
InData has finished in some fashion, and is informing you of how many records
per minute it imported, on the average. Respectively, data import has finished
normally, has stopped because of a fatal error, has been cancelled with the Can-
cel button, or has been stopped with the Stop button.

This message, along with the control panel window, will stay up for several sec-
onds after finishing, to let you read it (unless you’ve cancelled, in which case it
will disappear almost immediately). If you want to see it longer than that, sim-
ply click in the title bar of the InData control panel window, and hold down the
mouse button—the control panel will stay up as long as you hold down the but-
ton.

Error Messages
InData will put up an alert dialog when it encounters an error, requiring you to
confirm that you’ve seen the error message by pressing the OK button (or by typ-
ing a carriage return). Here is an example of what an InData error alert looks
like:

For file opening errors, InData will produce a standard InDesign-style error alert
(e.g., File is already open for writing).

After fatal errors, InData will exit, returning you to InDesign, after first dis-
playing the final status message Failed along with any import speed information
(discussed previously). After non-fatal errors, you can correct the situation that
caused the error and retry—e.g., you would correct an improperly formed start-
ing record number and press OK again, in the Range Preferences dialog.

An explanation and, in some cases, a suggested cure follows each error message.
In these explanations, a “___” placeholder in the message stands for an addition-

Troubleshooting and Error Messages Status Messages

InData User’s Guide 189

al piece of specific information about the error (for example, the name of the
offending field in an error message about an invalid re-definition of a field).

There are four “phases” of InData operation during which errors may be discov-
ered:

◆ User interface handling (e.g., dialog interaction);

◆ Prototype structural analysis (right after you select Import from ...);

◆ One-shot prototype processing (“execution”), right after prototype structural
analysis—at which time fields, global property set, and file open statements
are handled; and

◆ Normal prototype processing (“execution”) during data import.

The latter two phases are lumped together below, but errors discovered during
one-shot prototype processing are reported before anything else happens (such
as getting a dialog for the file to import).

On the Macintosh, any error that refers to “not enough memory” must be dealt
with in one of two ways. Either try to reduce InDesign’s memory requirements in
some way—close all unneeded documents, or move all unused plug-ins and filters
out of the InDesign folder and restart InDesign—, or else try to increase the
amount of memory the system gives to InDesign (exit the current InDesign ses-
sion, select the InDesign application in the Finder, invoke Get Info, increase the
current size field in the Memory section of the resulting “InDesign Info” window,
and then restart InDesign with the new memory allocation).

Any error that involves a malformed dialog field leaves the offending field fully
selected. Thus, in the simplest case, you can just re-type the field in error and try
again.

User Interface Errors
[M3] InData can’t initialize itself properly; most likely, there’s not enough memory
available.
[M8] InData can’t initialize itself for data import; most likely, there’s not enough
memory available.
InData is unable to get started in various ways, due to lack of memory (or, less
likely, due to something even more drastic).

[M6] You can’t have more than one source text frame candidate on the current
spread’s pasteboard.
[M32] You must have a source text frame candidate on the current spread’s paste-
board.
You’re using Import from Pasteboard..., and InData is looking for a text frame to
use as the data source for the import, but either you have more than one text
frame on the pasteboard of the current spread, or you have no text frames on the

Error Messages Chapter 14:

190 InData User’s Guide

pasteboard, respectively. (Note that all frames in any prototype story chain on the
pasteboard are ignored for the purposes of finding the data source text frame.)

[M9] You can’t use a non-digit in this character specification.
One of the character specification fields in the Data Format dialog is malformed.
These errors will only occur if the field contains more than one character—if it
contains just one character, that character is taken literally as the specification—
in which case the characters are interpreted as a decimal value for a Unicode
character. If you have a character that’s not a digit (0 to 9), fix it.

[M11] The first record to import isn’t a valid positive number.
[M12] The last record to import isn’t a valid, positive number, nor is it one of ‘last’,
‘end’, ‘all’, or ‘final’.
[M13] You can’t use a last record that’s less than the first record to import.
These are self-explanatory problems with one of the two fields in the Range Pref-
erences dialog.

[M1] Uh-oh, the self-consistency check named “___” has failed. Please report the
exact circumstances to Em Software.
[M14] InData unexpectedly failed to load its preferences.
[M15] InData unexpectedly failed to save its new preferences.
These errors will occur only when something is wrong with InData internals—
nothing you can do should be able to cause them, nor can you fix them, though
perhaps you can find some way to work around the problem. Contact Em Soft-
ware if you receive one of these error alerts. (We will most likely need an elec-
tronic copy of your prototype document and data file to fix the problem.)

[M17] The number of records between view updates isn’t a valid, positive number.
This is a self-explanatory problem with the single editable field in the View Pref-
erences dialog.

[M25] Warning: Your imported text overflowed its text chain. Unless you’re doing
something special, check to make sure you’re importing into the automatic text
frame.
You’ll receive this message after all data import is finished, if InData detects that
your data has overflowed its containing story. See the description of the common
problem, “I get only one page or spread of formatted data,” at the start of this
chapter.

[M26] You’re importing into a story that jumps from one page to an earlier page at
some point; this prevents automatic header/footer update.
You’ll receive this message when InData is about to update your document head-
ers and footers (whether automatically or manually), and it discovers that the
current story has backward links in the document. (This can only happen if
you’ve manually linked some text frames.) InData’s header/footer update machin-
ery can’t deal with this situation, so you’ll have to rearrange your text links to
accommodate InData’s limitation.

[M33] Sorry, that name is already taken; choose another.

Troubleshooting and Error Messages Error Messages

InData User’s Guide 191

Given in the Name Story... or Name Substory... dialog when a given name is
already used in a document.

[M34] Sorry, that name is too long; use a shorter one.
Given in a Name Story... dialog when a given name is too long (currently, longer
than 63 characters).

[M46] Named story not found.
Given in the Find Story/Substory... dialog when the named story wasn’t found in
the current document.

[M47] Named substory not found in named story.
Given in the Find Story/Substory... dialog when the named substory wasn’t found
in the named story.

[M48] The maximum variable length isn’t a valid, positive number.
Given in the Preferences=>General... dialog when the given maximum variable
length (in Kbytes) isn’t a valid number greater than zero.

[M49] Sorry, that continued string is too long; use a shorter one.
Given in the Make Header/Footer... dialog when the given Continued string is too
long (currently, longer than 63 characters).

[M50] The number of lines isn’t a valid, positive number between 1 and 99.
Given in the Maker Header/Footer... dialog when the given number of lines to
search is not a valid number in the range 1 to 99.

Prototype Structure Errors
For errors discovered during the prototype structural analysis phase, InData will
either select the discrete offending portion of the prototype, or else leave the
insertion point where the error was detected (which often isn’t where the error
actually occurs). For most of these errors, the general solution is to “fix the error
and try again.”

[M5] You can’t use an empty prototype.
You invoked InData with an empty prototype (either in the current text frame, or
in the story designated by Use Story as Prototype). You must supply a non-empty
prototype.

[T1] You can’t have this extra decimal point in a number.
[T2] You can’t use this character in a number.
InData has found something wrong with a number in your prototype. You’ve
probably forgotten a space between two elements, or simply made a typing error.

[T3] You can’t use this decimal point in an identifier.
InData found a decimal point (period) in an identifier, which can’t contain such a
character.

Error Messages Chapter 14:

192 InData User’s Guide

[T4] This string constant needs a closing double-quote. (It continues past the end of
line.)
[T5] This string constant needs a closing double-quote. (It continues into a closing
delimiter.)
You’ve forgotten to close a string constant, or else are trying to use a double-quote
character in a string constant (which you can’t). The following two examples illus-
trate these errors, respectively. The solution is to close the first kind of string, and
avoid the second.

«put styled "An unterminated bold phrase»
«if a = "a double-quote " character¶

[T6] This prototype is too large for available memory.
[P16] This prototype is too large for available memory.
Both of these messages mean the same thing: you’re trying to use a prototype
which is too large for InData to convert into its internal (“executable”) form, given
the amount of available memory.

You may also be mistakenly using many pages of already-imported data for your
prototype. This can happen if you try to import after another import has finished,
without first restoring the original prototype. (That’s one reason we recommend
you use a separate prototype on the pasteboard.)

If you’re really trying to use a large prototype, and get this message, then
increase the amount of memory available to InData.

[T7] You can’t use this character in a prototype.
You’re using some strange character in an InData prototype statement (inside
chevrons) that InData doesn’t know how to handle. You may want to delete it,
or move it outside the chevrons to place it literally in your formatted data.

[T8] This identifier or constant is too long.
You’re using an identifier (field, variable, property, or constant name) or a string
constant of length greater than 1,024 characters. Use a shorter name or constant.

[P1] You can’t change character styles here, inside an InData statement.
You’re using an InData prototype statement whose character styles aren’t total-
ly consistent. Note that the prototype statement, for this purpose, includes both
the opening chevron («) and the closing chevron (») or the closing new paragraph
(or new frame, new column, or new page) character.

This is one of the easiest errors to make, and one of the hardest to fix at times,
because you can’t always see what’s inconsistent. InData will leave the insertion
point before the first character that’s “different,” so you only have to figure out
what character style element is different, and change it to match the rest of the
statement. An easy way to fix this problem is to select the entire statement,
including both the opening and closing delimiters (whether chevrons or para-
graph characters), open the Character palette from InDesign (with the

Troubleshooting and Error Messages Error Messages

InData User’s Guide 193

Text=>Character... menu selection), change all the settings to what you want,
leaving no setting indeterminate, and then press OK.

Note that you can’t apply manual kerning to any portion of an InData prototype
statement, even between a closing chevron and the following character (which
would be a logical place to kern—this is a limitation we hope to remove someday).

[P2] You’re using this closing chevron (») without first using an open chevron («).
[P3] You’re using an open chevron («) somewhere without a matching close
chevron (»).
Both of these errors reflect a mismatch of prototype statement delimiters. Add
the required chevron or new paragraph at the appropriate point.

If you need to use a chevron character in your formatted data, then you can use
the constructs «guillemetleft» to insert a « and «guillemetright» to insert a »
(guillemetleft and guillemetright are the Adobe Postscript character set names
for the chevrons).

[P17] InData expected to find ___, but found the selected text instead (or ran into the
end of the prototype).
This is a “kitchen sink” error message, used when the InData structural analyz-
er didn’t find what it expected. It’s not terribly helpful, because what it expect-
ed to find often has only an obscure relation to what you’re trying to do, and
where it found the error often has nothing to do with the real location of the prob-
lem. (Computer language parsers still aren’t very well human-engineered, nor
are they willing to forgive even the slightest error.)

Perhaps the most common source of this error (and the most misleading result-
ing error message) is forgetting to close an «if» statement with an «endif»: InDa-
ta leaves the insertion point at the end of the prototype, because the error won’t
be spotted until then, but that’s not normally where the «endif» should go.

Another common source of this error is mistyping a keyword such as fields, if, etc.,
or forgetting a comma between field names in a fields statement.

[P19] Only anchored picture frames are supported.
You’ve included an anchored text frame in your prototype. Presently, InData only
knows how to deal with anchored graphics frames. Either delete the anchored
text frame, or replace it with an anchored graphics frame, if that’s what you
meant to include.

[P21] You can’t use more than one of ‘styled’, ‘marked’ and ‘into’ in this ‘put’ state-
ment.
You’re trying to use conflicting forms of the put statement simultaneously. Decide
which one you want, and get rid of other(s).

Error Messages Chapter 14:

194 InData User’s Guide

[P25] You’re giving too many arguments to this function call.
You’re using more than two arguments to a function call, which is beyond the cur-
rent limit. (No InData function takes more than two arguments.) Get rid of the
extra argument(s).

Prototype Execution Errors
For errors encountered during data importing (“prototype execution”), InData
usually appends the following information to the error message: (This error
occurred while importing record number ___.) This knowledge may help you track
down the error, particularly if it’s data-related—you can examine the data record
in question with a text editor, and see what might be causing the error.

Many of these messages begin You can’t... This isn’t meant literally, since many
errors can be triggered quite indirectly, by operating on malformed data far, far
away from your original prototype intent—it’s just a short way of saying “there’s
a problem here of the following nature.”

Any error message beginning Warning: is not a fatal error, but is rather a problem
that you should know about (it usually involves the potential loss of data, such as
missing pictures, or overflown text framees).

[M4] You can’t import any more records in this demonstration version.
You’re limited to 30 records in the demonstration version of InData, and you’re
trying to exceed that limit. Import fewer records. (You should never see this in the
full product.)

[E1] You can’t use a string (in this case, beginning ‘___’) longer than 32,767 character
in a string comparison test, or in a ‘is in’, ‘is not in’ or ‘contains’ test.
One of your fields contains more than 32 KB of data (which is fine, in itself—
InData can read and place fields of any length), and you’re trying to use it in a
string comparison or string containment test of some sort. You’ll just have to
avoid using this field in this test, for this set of data. (This is a very unlikely
error.)

[E4] You can’t ‘set’ a field (in this case, ‘___’).
[E39] You can’t ‘set’ a variable (in this case, ‘___’).
You’re using a field or variable as the target of a set statement, which makes no
sense (the set statement is for setting properties, not variables or fields). Use the
put statement to change a variable; you can’t change a field.

[E5] You can’t have a ‘fields’ statement inside a conditional.
[E24] You can’t set the global property ‘___’ inside a conditional.
All fields, global set, and open statements must be at “top level,” that is, not inside
an if statement. E.g., the following fields declaration is not at top level: «if
field»«fields name, address»«endif». Move the offending statement to near the start
of the prototype, outside of any if statement.

Troubleshooting and Error Messages Error Messages

InData User’s Guide 195

[E6] You can’t re-use the field name ‘___’, which is already in use (as a different field).
You’re using the given field name in a contradictory fashion. E.g., in the prototype
fragment:

«fields name, address, zip
«fields name, zip, phone

the field named zip is being declared first as field number three, and subsequently
as field number two. Fix the conflicting fields statement.

[E7] You can’t use ‘___’ as a field name, since it is already in use as a constant, vari-
able, or function name.
The given field name is being used for some other purpose, so you’ll have to
choose another field name for use in your prototype. (Be sure to change all occur-
rences of the offending field name—it’s easy to forget one or two.)

[E8] InData can’t handle all the fields being named in a ‘fields’ statement, because
there’s not enough memory available.
You’ll have to increase the memory available to InData, somehow, or use fewer
field names. (Note that there’s no built-in limit on the number of fields—it’s just
a question of having enough memory available. There are real-life cases of 600
fields in a prototype.)

[E9] InData encountered an I/O error reading the data file.
InData was told by the host operating system that something went wrong, whilst
reading from your source data file. This is probably most commonly caused by a
file server shutting down while you’re importing data from a file living on that
server, or by bad media on a hard or a floppy disk drive. You’ll have to consult
higher authorities for this particular error.

[E11] InData can’t store the current input record, because it’s too large for available
memory.
Either you’re running low on available memory, or else you’re trying to read a
large record from your data file. In either case, you’ll have to give InData (InDe-
sign) more memory to work with. (InData has no built-in limit on the size of its
input records—it’s been tested with input records of multiple megabytes.)

Most likely, there’s a stray double quote character in an input field that’s causing
InData to attempt to read a huge amount of data until the next double quote.

[E12] You can’t use a non-constant expression (in this case, involving ‘___’) in an
‘open’ or a global ‘set’ statement.
You’re trying to use a field or a variable in a context where no variability is per-
mitted (during the “one-shot” prototype processing). E.g., «set picpos to a» will
cause this error, since the value of field a is undefined when setting the global pic-
ture position property before starting import.

Error Messages Chapter 14:

196 InData User’s Guide

[E13] You can’t use the value ‘___’ as a conditional (Boolean) value; it should be either
‘true’ or ‘false’.
Usually, this error means you’re giving an if statement a conditional value that’s
really a string or a number; e.g.:

«if char 1 of a»«a»«endif»

which isn’t what you meant; instead, use something like:

«if char 1 of a is not empty»«a»«endif»

Another easy mistake is to mentally extend the shortcut «if field» to the logical
junction operators: e.g., «if field1 and field2», meaning if both field1 is not empty
and field2 is not empty; unfortunately, this won’t work: you must use the full form
«if field1 is not empty and field2 is not empty».

[E14] You can’t use a string (in this case, the string beginning ‘___’) longer than 255
characters in the current context.
There are some contexts where InData limits your string values to a maximum
of 255 characters—usually, when dealing with file names in the open and set file-
name of picture statements. For example, you may be using picture file names
from a field in your data file, and it’s certainly possible to have fields longer than
255 characters; if you use a statement like «set the fn of picture 1 to longname», you
may receive this error. The only solution is to use a shorter string.

[E15] You can’t use a number that’s empty.
[E17] You can’t use a number (in this case, ‘___’) containing more than one decimal
point.
[E18] You can’t use a number (in this case, ‘___’) containing an embedded minus sign.
[E19] You can’t use a number (in this case, ‘___’) containing a minus sign but no
digits.
[E20] You can’t use a number (in this case, ‘___’) containing embedded spaces.
[E21] You can’t use a number (in this case, ‘___’) containing non-numeric characters.
[E31] You can’t use a number (in this case, ‘___’) that contains more than one minus
sign.
All these errors are simply complaining about your use of a number that’s mal-
formed in some way. For example, in the fragment «if (a + 1) > 10», if the field a con-
tains the string "1a2", then you’ll receive an error complaining about non-numer-
ic characters. Unless you’ve just made a simple error in your prototype, the only
real solution is to make sure the original field in the database is always a valid
number, before using it as such in your prototype by testing it with is a number or
is an integer.

[E16] You can’t use a non-integral number (in this case, ‘___’) in the current context.
Some contexts, such as the operands to arithmetic operators, and the indices in
character, line, item and word operations, require an integral numeric value. The
only solution (similar to the errors immediately above) is to make sure you’re only
using integral values in these contexts. E.g., in general, you can’t add or subtract
prices in InData (price1 + price2), since prices often contain fractional values.

Troubleshooting and Error Messages Error Messages

InData User’s Guide 197

[E25] You can’t set a property of picture ‘___’, because no such picture is present in
the prototype.
You’re using a statement of the form «set property of picture n to ...», but there’s no
nth picture in the original prototype. Pictures are indexed starting at 1, from the
start of the prototype forward (ignoring the effects of conditionals at import time).
Change n to correspond to one of the pictures in the prototype.

[E27] You can’t ‘set’ the unknown property ‘___’.
You’re using a statement of the form «set property of ... to expression», but the given
property isn’t one that InData recognizes. It’s probably a simple typographical
error.

[E28] You can’t ‘set’ a property of an unknown object type (in this case, ‘___’).
You’re using a statement of the form «set property of objecttype to …», but the given
objecttype isn’t one that InData recognizes (currently, only picture is supported as
an object type). You’ve probably made a simple typographical error.

[E29] Warning: during data import, a picture file was not found, and its picture frame
was left empty.
[E30] Warning: during data import, ___ picture files were not found, and the corre-
sponding picture framees were left empty.
These are fairly self-explanatory. You’ll only receive these warnings if you have
checked Keep importing after missing pictures in the InData General Preferences
dialog.

If you’d like to know exactly which picture files are missing without going
through the entire document, re-do the import, after turning off Keep importing
after missing pictures, and InData will stop importing at the first missing picture,
and tell you its file name. Fix that problem, and import once again, finding the
next missing picture; etc.

[E32] You can’t import the picture file ‘___’, because it doesn’t contain a picture file
format that InDesign understands.
InData found the given picture file, but InDesign can’t import it because it does-
n’t contain a picture type that InDesign can process. Either fix the file name to
reference a valid picture file, or change the file to a type that InDesign can import
with its Get Picture... command.

[E33] You can’t import the picture file ‘___’, because the file can’t be found.
InData can’t find the given picture file. Check to make sure the file exists, and, if
it does, check that the list of picture folders established by any «set picturefold-
ers to ...» statement is correctly constructed.

Alternatively, this error message will occur when you are trying to import into
a document which has never been saved to disk, and thus has no “home folder”—
either because it was created from scratch, generated from a template, or con-
verted from an earlier version of InDesign or from a different platform—regard-
less of the format of the specified picture file.

Error Messages Chapter 14:

198 InData User’s Guide

[E34] You can’t ‘put hidden’ the data beginning ‘___’, because it’s too long.
InData has a quite generous but fixed upper bound on the length of the data that
can be put hidden. You’ll have to shorten the data you’re trying to insert.

[E38] You’re calling an unknown function ‘___’.
You’re calling a function whose name InData doesn’t recognize. It’s probably a
simple typographical error, e.g., «if lengh(a) > 3»...«endif».

[E40] You can’t put a string longer this long into a variable (in this case, ‘___’).
You’re using a statement of the form «put expression into variable», but expression
resulted in a string longer than the maximum specified in the Maximum length
of variables field in the General Preferences dialog, and you can’t store it in a
variable. You’ll have to shorten the data you’re trying to store or increase the
maximum variable length setting.

[E41] You’re trying to divide by zero.
One of the division operators in the prototype detected an attempt to divide some-
thing by zero, which is meaningless. You can guard against this case by always
testing that a given divisor is non-zero; e.g.,

«if a <> 0»«put c / a into quo»«else»«put 0 into quo»«endif»

This error can also be triggered by the mod operator.

[E42] You’ve passed the wrong number of arguments to the function ‘___’.
You’re calling the given function with either too few or too many arguments
(operands). Check the InData Reference summary for the correct calling form.

[E43] You can’t create a string (in this case, beginning ‘___’) this long with concatena-
tion.
A string concatenation failed because the resulting string would be larger than
maximum variable length given in the Preferences=>General... dialog.

[E44] You can’t return a string this long from the function ‘___’.
A function return failed because the resulting string would be larger than the
maximum variable length given in the Preferences=>General... dialog.

[E45] You can’t set the property ‘___’ to a string this long.
A set failed because the value being set would be larger than the maximum vari-
able length given in the Preferences=>General... dialog.

[E46] You can’t ‘put ... into’ a field (in this case, ‘___’).
A prototype is trying to put a value into a field, which isn’t possible, as fields are
read-only.

[E47] You can’t get the contents of file ‘___’, because it can’t be found.
A filecontents(___) failed, because the named file wasn’t found.

Troubleshooting and Error Messages Error Messages

InData User’s Guide 199

[E48] InData encountered an I/O error reading the file ‘___’.
A filecontents(___) failed, because it received an error while reading the file con-
tents.

[E50] The InCatalog link key value beginning ‘___’ is too long.
The specified InCatalog link key value is too long and must be shortened.

AppleEvent Scripting Errors
The following errors are all scripting-related, returned as an error parameter by
a failing import data AppleEvent.

[M35] Input file specification (direct parameter) missing or invalid.
No input file parameter was given in the import data AppleEvent.

[M36] Prototype story name parameter missing.
No prototype story name was given in the import data AppleEvent.

[M37] Named prototype story not found.
The prototype story name given in the import data AppleEvent wasn’t found in the
current document.

[M38] Target story name parameter missing.
No target story name was given in the import data AppleEvent.

[M39] Named target story not found.
The target story named in the import data AppleEvent wasn’t found in the current
document.

[M40] Input file not found or not openable.
The input file given in the import data AppleEvent wasn’t found, or wasn’t open-
able.

[M41] No document is currently open.
An import data AppleEvent was given when no document was open.

[M42] Named substory in target story not found.
The target substory named by the import data AppleEvent wasn’t found in the
named target story.

Error Messages Chapter 14:

200 InData User’s Guide

SYMBOLS

- 93
-- 85
& 107
&& 107
() 93
* 93
/ 93
[92
| 92
+ 93
< 88
<= 88
<> 88
= 87
> 88
>= 88
« and » 15, 108

A

address labels 65
and operator 92
AppleScript 45, 49, 153, 156, 200

errors 200
arithmetic operators 93
ask statement 141, 169
autoflow 8
automatic field names 56
automatic text chain 54
automating data importing 45
auxillary folders 9
avoiding blank lines 29-30, 94

B

Basic format pop-up 18
boolean expressions 92

C

case construction 91
case conversion functions 112
case sensitivity 61
character operator 30-32, 103, 174
character sets 165
character to number conversions 112
chartonum function 112-113, 175
chevrons 15, 55, 108, 179

inserting literal 108
typing 23
when to omit 33, 63

clipping paths 121
comma-delimited format 69, 77
comment designator 85
comparing records 33, 94
comparison operators 87, 180
complex conditions 92

parentheses in 93
conditional importing 29-30, 85
contains operator 88
control panel, see InData control panel
conversion functions 112
custom date formats 70

D

data import procedure 17-18
undoing 19

Data Preferences panel 140
data validation 150
database programs 79, 81
debugging 147
dec2frac function 112-113, 175
defaultisstyled setting 143
defaults 25
demo version 9
division by zero 93
document setup 21, 53

Indata User’s Guide 201

Index

Document View during Import dialog 71,
165

double hyphen-to-em dash conversion 144
downcase function 112, 175

E

else if statement 90
else statement 87
em-dash 85
end repeat statement 99
endif statement 86
error messages 185-200

scripting-related 200
examples 111, 119, 157

detectives 119
invoice 111
scripting 157-158

Excel 83
exit repeat statement 101, 169
exit statement 135, 169
exporting data files 78

F

false constant 178
fi statement 92
field placeholder 15
field placeholders 56
field separator 174
fieldindex function 115
fields statement 15, 55, 142, 169

multiple 142
skipping fields with 62

fieldvalue function 115
filecontents function 145, 175
fileexists function 145, 175
fileinfo function 175
FileMaker Pro 79, 111
Find Story/Substory dialog 165
fixed-width fields 140
footers 40, 130
forcing text to next column/text box 66
FoxBase/FoxPro-style quoting 70
frameinfo function 176

G

General Preferences panel 74-75, 122, 166.
See , pictures

Keep importing after missing pictures
checkbox 125

getting started 11
graphics. See pictures
grouping operators 181
guillemetleft constant 179
guillemetleft operator 108
guillemetright constant 179
guillemetright operator 108

H

header record 70
headers 40, 130. See , pictures
hidden keyword 128
hidden text 155, 170

I

if statement 86, 169
alternate forms 92
nested 93
paragraph marks in 94

import data AppleEvent 153
import data format 18
Imported Data Format dialog 18, 164

Basic format pop-up 164
importing 71

controlling 72
range of records 71

InCatalog 200
InData control panel 68, 72, 163, 187-188

messages in 187-188
status messages 187-188

InData menu 53, 67, 130, 162
About 68, 163
data import selections 57
Find Story/Substory 67, 155, 162
Import from Clipboard 67, 162
Import from File 57, 67, 162
Import from Pasteboard 67, 162

Index

202 Indata User’s Guide

Make Header/Footer 67, 162
Name Story 67, 162
Name Substory 67, 155, 162
Preferences 67, 74, 163
Preferences submenu 163
Update Headers/Footers 67, 130, 162
Use Story as Prototype 57, 67, 162

InData.Reg file 9
InDataImportFromFile method 158
InFlow 8
inserting files during import 145
integer operators 180
interchange formats 77
is a operator 140
is empty operator 87
is in operator 88
is not empty operator 87
is not in operator 88
is not operator 88
is operator 88
it constant 179
it variable 141
item delimiter 172
item operator 110, 176

K

keyboard equivalents 161
knock-outs 34

L

length function 31-32, 106, 176
limitations 181
line operator 109, 176
logical connectives 92
logical operators 181
loops 99

exiting from early 102
variable indexed 100

M

Mac OS 9 vs Mac OS X 1
Make Header/Footer dialog 42, 129, 167

manually-created data files 84
mark 41, 127
mark reference 42, 127
marked keyword 41, 127
master pages 13, 132
maximum length 75
memory usage 9
memory usage under Mac OS 9 181
menu, see InData menu
mod operator 93, 180
modulus 93
MS Word comma-delimited format 77
MS Word merge comma-delimited format

69
MS Works tab-delimited format 69, 77
multi-part documents 156

N

Name Story 155
Name Story/Substory dialogs 167
naming data fields 55
new box character 66
new column character 66
new line character 24, 29-31
next keyword 94
next operator 177
next repeat statement 102, 170
next statement 135, 170
nonstyled keyword 144
number of items statement 110
number of lines statement 110
number of statements 177
number of words statement 108
number to character conversions 112
numtochar function 112, 177

Index

Indata User’s Guide 203

O

offset function 107, 177
open statement 170
or operator 92

P

page number placeholder 22
pageinfo function 114, 177
parentheses 181
PDF files, pictures from 118

cropping 118
pictures 36, 74, 117-126

conditionally importing 38
file locations 124
frame attributes 121-123
missing files for 40, 125
PDF file page as 118
positioning and sizing 74, 121
precise placement of 125
scaling 121, 123
set pictureposition statement 122
setting attributes of 38, 122

preferences 67, 74, 163
previous keyword 33, 94, 135
previous operator 177
prompting the user 141
prototype 53, 86, 117, 127, 135, 147, 168,

195-197
applying master pages 132
prototype 132
comparing records in 33
conditions in 86
debugging 147
designating 59
downplaying 150
error messages 195-197
errors in 73
inserting file from 145
invalid format 26
literal text in 15
loops in 99
mark in 127
multiple text boxes for 149

on pasteboard 59
paragraph marks within 29-31
picture box in 36, 117
placement 14, 58-60
prompts from 141
resetting 20
restrictions 182
selecting 60-61
setting picture attributes in 122
testing 147

put hidden statement 171
put marked statement 170
put statement 75, 127, 137, 170

defining variables with 137
hidden keyword 128
inserting file with 145
into keyword 170
marked keyword 127
nonstyled keyword 144
quoted keyword 144
styled keyword 143
unquoted keyword 144
unstyled keyword 144

put styled statement 171

Q

quote constant 179
quoted keyword 144

R

Read Me file 7
read statement 135, 171
Record Preferences panel 71, 168
record separator 174
recordnumber function 96, 114, 178
reimporting 57
remainder 93
repeat statement 171

repeat forever 101
repeat until 100
repeat while 100
repeat with 100

repeating fields 81, 111

Index

204 Indata User’s Guide

reserved words 182
retrieving the next data record 135
return constant 179
return global constant 144
reversed type 34, 60
right chevron mark 33
rules 34, 98

vertical 98
running headers/footers 40, 127

changing after data import 131
headers, footers. See also
updating 130

S

samples 7, 54, 91, 120, 140, 150
dump fields 150
mailing labels 54
ruled table 98
spice catalog 150
wedding invitation 54
word wrapping by column 140

Scripting Examples folder 7
scripts 49, 51, 157
serial number 9
set defaultisstyled statement 172
set filename command 37, 118
set filename statement 172
set firstmaster statement 132
set fn of pic command 118
set height of picture statement 123
set itemdelimiter statement 110, 172
set master statement 132, 172
set picturefolders statement 124, 172
set pictureimportcrop statement 118, 173
set pictureimportpage statement 118, 173
set pictureposition statement 173
set statement 172, 174

autostart keyword 174
clipboard keyword 174
endrecord keyword 174
fieldquote keyword 174
fieldseparator keyword 174
filetype keyword 174
fldsep keyword 174

ignoremissingpictures keyword 174
options for 172, 174
recordseparator keyword 174
startrecord keyword 174
subfieldseparator keyword 174
viewfrequency keyword 174

set width of picture statement 123
set wordcharacters statement 173
set worddelimiters statement 173
set xmargin of picture statement 123
set xoffset of picture statement 123
set xscale of picture statement 123
set ymargin of picture statement 123
set yoffset of picture statement 123
set yscale of picture statement 123
solutions to common problems 185-187
special characters 161
spreadsheet applications 83
story 48, 153

searching for 155
string concatenation operators 107
styled keyword 143
styled text 143
subfield operator 111, 178
subfield separator 174
substory 49, 153

searching for 155
substrings 107

T

tab constant 179
tab-delimited formal 69
tab-delimited format 77
technical information 181
trim function 112, 140, 178
true constant 179
Tutorial folder 7

U

Unicode 165
unquoted keyword 144
unstyled keyword 144
upcase function 112, 178

Index

Indata User’s Guide 205

V

validating data 150
variables 75, 137
VBScript 46, 50
View Preferences panel 165
Visual Basic 158
Visual FoxPro 81

W

Windows vs. Mac differences 4
word characters 173
word delimiters 173
word operator 108, 178
wordcase function 112, 178

X

XPress Tags 143, 171

Index

206 Indata User’s Guide

	Table of Contents
	List of Tips and Techniques
	1 Introduction
	System Requirements
	What You Need to Know …
	About This Manual

	2 Installing InData
	InData Distribution Contents
	Installing the InData Plug-ins
	Personalizing Your Copy of InData

	3 InData Tutorials
	Preliminary Information
	Tutorial 1: Preparing an Address List
	Tutorial 2: Creating a Company Phone List
	Tutorial 3: Advanced Data Importing
	Tutorial 4: Adding Department Headlines
	Tutorial 5: Importing Pictures
	Tutorial 6: Adding Document Headers and Footers
	Tutorial 7: Automated Document Creation

	4 Basic InData Operations
	A Quick Overview of InData
	InData Prototype Fundamentals
	More Examples of Formatting Prototypes
	The InData Menu
	Data Import Options
	Setting InData Preferences

	5 Preparing Data for Importing
	Data File Formats
	General Exporting Procedures
	An Example from FileMaker Pro
	An Example from Visual FoxPro
	An Example from Excel
	Creating Data Files Manually

	6 Conditional Data Importing
	if Statements
	Constructing Conditions
	Comparing with the Previous or Next Record
	Doing Something Every nth Record
	Constructing and Using Loops within Prototypes

	7 Manipulating Incoming Data
	Extracting Parts of Fields and Expressions
	Extracting Words and Lines from Expressions
	Handling Repeating Fields
	String Conversion Functions
	Determining the Current Record or Page Number
	Accessing Arbitrary Fields within Records

	8 Importing and Formatting Pictures
	Importing Pictures
	Setting Picture Frame Attributes
	Setting Default Directory Locations for Picture Files
	Handling Missing Picture Files
	Specifying Precise Picture Locations on the Page

	9 Controlling Document Layout
	Creating a Mark in the Prototype
	Adding a Mark Reference to the Master Pages
	Updating Existing Headers and Footers
	Applying Master Pages within a Prototype

	10 Advanced Prototypes
	Record Input Control Statements
	Setting Variables
	Testing the Data Type of Expressions
	Soliciting Input at Import Time
	Using Multiple fields Statements
	Inserting Styled Text and Text Files

	11 Hints for Debugging Prototypes
	Test with a Few Sample Records First
	Build up the Prototype Gradually
	Use Multiple Text Frames for the Prototype
	Make Sure the Data is OK
	Downplaying Prototype Statements

	12 Automating Document Building
	Conceptual Overview
	Naming Stories
	Using InData with AppleScript (Macintosh)
	Using InData with Windows Automation (Windows)

	13 InData Reference
	Entering Special Characters
	The InData Menu
	InData Control Panel Buttons
	Data Preferences Panel
	View Preferences Panel
	Find Story/Substory Dialog
	General Preferences Panel
	Make Header/Footer Dialog
	Name Story and Name Substory Dialogs
	Range Preferences Panel
	InData Prototype Elements
	InData Technical Information

	14 Troubleshooting and Error Messages
	Common Problems and Their Causes
	Status Messages
	Error Messages

	Index

